Relating processes with real-time property. |

- Takashi Kitamura, Atsushi Togashi

— 11‘_

Abstract

In this research, we consider some (bi)simulation-based relations of processes in timed -

process algebra(TPA),'which reflect real-time property; we attempt to reflect real-time

property into the discussion of relating processes in TPA. To be more precise, we relate
fuhctionally identical processes with respect to real-time property. We discuss the issue
on ﬁ[’eCCS, which is one of timed process algebras. As a result, we propose six kinds
of speed, hence six relations of processes that reflect real-time property in TPA. We also
present the some properties of these relations, including congruence 'property of relations.
We show that these relations are not congruent for 7ileCCS, but congruent for all the
operators of kTeCCS, whose semantics is slightly diverse from that of 7ileCCS for the sake

of congruence. We also show an example for those relatlons

- 12 —

Contents

1 Introduction . 1

2 - Preliminary _ 5

2.1 The calculus: AleCCSo 5

2.1.1 Syntax e T SR 5

2.1.2 Semantics 7

2.2 LTS(Labelled Transition System) and relations of processes in TPA 9

2.2.1 LTS and relations of process algebrao L. 10

2.2.2 Relations of processes in TPA . . . o - 12

2.3 Summary ... 19

3 Design Choices for Relations of Processes with Real-time Property 21
3.1 LTS(labelled transition system) and relations of TPA(Timed Process Algebra) 22

3.2 How to Design Real-time Property into relation of "leCCS 24

3.3 Formalization of relations with real-time property28

3.3.1 Exact-time bisimulation,’ exact-time equivalence 28

3.3.2 Action-occurrence-faster-than relation. 34

3.3.3 Strong total-time equivalence © 40

3.3.4 Strong after-faster-than relation 43

3.3.5 Strong fairly-faster-than relation 46

3.3.6 Strong total-time-faster-than relation . . . S 49

'4 Examples _ _ 52

4.1 Timed queue system B2

4.1.1 Basic system of queue systemo 52

4.1.2 Constructing queue system with untimed CCS .~52

- 13 —

4:1.3 Constructing queue system with timed CCS

'4.1.4 Summary e e e e e e e e e

5 Conclusions and Future Work

References -

f— 14 —

%)
61

63

66

Chapter 1
Introduction - o

Process algebra is widely studied as a mathematical model ﬁo reasoning about the be-
haviour of concurrent systems. Its tools are algebraic languages and it is useful in both
specification and verification of concurrent systems. Most traditional and main stream
' of such approaches are Milner’s CCS(Calculus of Communicating Systems)[MilSQ] [Milgg], '
CSP(Communicating Sequential Processés) [Hoa85][Hoa78] and ACP(Algebra of Commu-
nicating Processes)[BK85|[Ber86]. In such traditional works, time properties are ignored
for the sake of abstra_ctions. And this abstraction view turns out to be a major contributing
factor to the success of process algebra. In other words, this abstraction brings an elegant

‘theory to a calculus of communicating systems.

On the other hand, it is a fact that time often plays an important role in describing '
many concurrent systems. There are a lot of scenes to be formalized or verified with time
notion in real systems. Several researchers noticed the importance of time notion and over
the years conducted researches to develop process algebras with time constraints, [MT90]

"[Wan90] [NS90] [Sch91] [HR95] etc, extending CCS, CSP, ACP. They are well-founded and

gave fruitful results to timed systems. .

~ But among those works, study on the discussion of relating processes under the time
notion is missing. In most of the works, functional behaviour and temporal behaviour are
treated thoroughly in the same way; two processes are related only if they are observed
~equivalent in both their functional and témporal behaviour by external observers. This -
may be one approach to relate processes in the stream of Milner’s bisimulation relation.

But z{pparently it is not an enough good strategy to inherit Milner’s bisimulation notion,
which is developéd for the functional ‘behaviour, and apply it to the temporal behaviour

9 ' ' . ‘ CHAPTER 1. INTRODUCTION

as it is. This is because functional and temporal properties are completely different in

their character. Therefore we need to‘déliberate time properties well and design a new
framework to reflect them into the discussion of relating processes.

Moller et al. first invented a new and practical idea of relating process in a TPA(Timed
Process algebra) in [MT91]. They paid attention to the fact that the real-time property

“was the one of the most important properties in practical timed systems from engineering
" viewpoint. Therefore they attempted to reflect real-time property into relating processes in

TPA and consequently they invented a new binary relation over processes, called “faster-

than” relation, based on Milner’s simulation relation. The faster-than relation of processes

relates two processes with respect to speed; it provides an order relation of two processes,
which relates two processes whose functional behaviours are identical but operate at dif-
ferent speed. The faster-than relation of processes is an order relation so that processes
can be compared with respect to their speeds. This idea of relating way of processes re-
flects real-time property, because by relating processes, whose functionalvbe.haviours are

equivalent, with speeds we can guarantee time constraint of action occurrence of processes.
Hence we can guarantee a process to be certainly completed. within a given time. It is an-

important result that the new notion of real-time property has been introduced into the
discussion of relating processes in TPA. But Moller’s faster-than relation reflect only one
aspect of real-time property. With Moller’s faster-than relation, we cannot acquire two
processes to be in the relation which express the other'aspects considered as a gﬁarantee of

real-time property. That is, this Moller’s relation does not reflect a real-nature of real-time.

property. Also Moller’s faster-than relation confine the processes to be related too strictly
so that we often cannot, relate two processes that have very similar temporal behaviour as
well as completely identical functional behaviours. So we may well want to construct -more

general relation which is more general than the Moller’s faster-than relation.

Recently, Luttegen et al. addressed to reflect real-time pfoperty into the relating
processes on TPA in another way[LVO01]. They developed a new timed language, called

- TACS(Timed Asynchronous Communicating Systems), with new treatment of time notion.

In contrast to other TPAs, TACS treats time as maximum delays of action. This treatment
of time is useful in some aspects in computer systems, because sometimes in practice we
want to design a system with maximum delay. He proposed some new relations that reflects
real-time property, relating processes with respect to speed. He set up start states and
end states into LTS(Labelled Transition’System) in a TPA as in automata, and compared

the speed of two processes in a TPA by means of the time for action sequences from start

— 16 —

state to end state of process to be performed. This is interesting in a-respect that we are
able to compare the speed of the action sequence from the start state to the end state of
two processes and to know which of two processes has a faster action sequence. But still
it is not based on the principle of process algebra to establish start states and end states
in LTSs in process algebra. Hence we can say that this faster-than relation of processes is
not basic to the principle idea of process algebra. What is more, such relations Luttgen
proposed are useless in the presence of infinite process in process algebra and hence have K

to be confine into the finite proéess in process algebra.

In this paper, we consider more general and more basic relations befween processes in
TPA which take real-time property into consideration. That is, we introduce some relating
systems of processes of TPA, whose functional behaviour is equivalent but operate at differ-

ent speeds, and accordingly propose relations of processes which reflect real-time property.
| Moreover, the relations to be proposed are more general than Moller’s relation and more
basic than Luttgen’s relation. We work on this matter on the calculus of [TeCCS[MTI0],
which is one of TPAs, proposed by Moller and Tofts. (TeCCS is a timed extension of
CCS and the time notion in ITeCCS treated as a time delay. In considering inventing
the relating systems of processes in [TeCCS, we first have to examine the LTS, which is
a description of process, in {TeCCS. However how to construct a LTS in {TeCCS, whose
transition is composed of the functional action transition and temporal clock transition, is
- various therefore rather complicated. But we regard the functional actions as a central role
of the behaviours of processes and temporal behaviour as a temporal description for action
execution. That is, we regard the time of [TeCCS as time delay which is imposed on action
executions. Based on the idea, we acquire the some typical or normal form for LTSs of
[TeCCS. Also, we carry out the work of relating processes on the basis of such LTSs. The
relations to be proposed will be based on the traditional framework of felating processes
in process algebra; the simulation relation. Real-time property designed to be reflected on
such a LTS within the framework of simulation relation by manipulating newly-introduced
time notion, namely temporal clock transitions. In this way we reflect real-time property
into the relating processes within the framework of the notion of simulation relation so
that relations to be proposed is unique to the LTS in [TeCCS and the notion of simulation
relation. As a result, we will propose 6 kinds of relations of processes in [TeCCS, that
reflect real-time property. All the relations are considered under the real-time property,
but each expresses different aspects of real-time properties. Among these 6 relations, each

relation is related with the other by descriptive. We also show that one of 6 relations

4. | . CHAPTER 1. INTRODUCTION

is more general one-than the equivalence relation, which is commionly introduced in the
former reseafches on TPA, ahd Moller’s faster-than relation. .In other words, one relation
of the 6 relations we propose in this paper is a géneral one of the common equivalence
relation in most of the TPAs, meaning this relation include the equivalenée relation of
most of the TPAs, and another relation of them is a general one of Moller’s faster-than
~ relation, meaning‘this relation include the Moller’s faster-than relation. After discussing
these relations, we formalize these 6 relations in the manner of process algebra, modifying
the basic simuldtion relation. We also provide properties of each of these relation, including

congruence property, and the relation of these 6 relation.

9

Chapter 2
/\ Preliminary’

In this chapter, to work on the relating systems and relations on timed process al-
gebra(TPA)s,we review ileCCS(loose Temporal Calculus of Communicating System) and
- relations of TPAs suggested in preceding works, as a preliminary. Many works on timed pro-
© cess algebras are conducted, hence quite a few timed Ianguagés have been Suggested already.

1TeCCS is one of those timed languages proposed by Moller and Tofts [MT90][MT91]. It is -
an extension of CCS with time constraints, treating the time as a time delay. We work on
the simple calculus of TeCCS. Hence we first introduce the calculus 7ileCCS of its syntax
and semantics. Then to review the history of relations in TPAs, we will see a timé-indepent
“and a time dependent relation in TPA already proposed in former researches. We also show
some problems about these two relations, already proposed in the former works, are not

well designed with the notion of time or real-time property.

2..'1 The calculus: "TeCCS

In this section, we review the calculus nTeCCS by presentmg the syntax and opera-
t1onal semantics of the language. A description is follows however readers are strongly ‘
recommended to read original papers [MT90] [MT91] to refer to the full treatment of the
calculus. 7[eCCS is a natural extension of CCS with notion of discrete time and-has a
conceptual similarity with a Timed CCS proposed by [Wan90] in its syntax and semantics.

s

2.1.1 Syntax -

— 19’_

——————

6 - o | : CHAPTER 2. PRELIMINARY

*

We first presuppose an infinite set A of actions and A of complementary actions. Then
we take the set of atomic action symbols Act to be AU A U {r}. An action communi-

. cates with 1ts complement a to produce the internal action 7, as in CCS. And we assume

T ={1,2, 3 .,w} to denote division in discrete and continuous time. The syntax of the
language, which is a subset of TeCCS(Temporal Calculus of Commumcatmg Sysytems), is
given by following BNF expressions. '

Deﬁnition 1 (Abstract Syntaz)

P = 0 (Nil)

| X (Variable)

| a.P (Action prefiz)

) (t) .P (Clock prefiz)
P+ @ (Summation)
| P Q (Parallel composition)
| P\ L (Restriction)
|
|

P[S] (Relabeling)

i X.P (Recursion}
where t denotes an element of T and X is a variable belonging to a countable infinite set
Var of variables.

a

~ Here, we give intuition of these operators. First, 0 represents the nil process, which
idles and cannot perform any action. X means the process bound to the variable X. a.P

represents the process which tries to execute the action o immediately and evolves into

the process P by doing so. This transition itself takes no time, i.e. action is atomic. And .

also we give a property «.P will wait forever until its environment becomes ready. The
summation combinatory P + Q is used to describe non-deterministic choices. The process
will behave as the process P or the process @Q, with the choice being made at the time of
the first action. Thus, for instance an initial passage of time must be allowed by both P
and Q. P|Q represents the parallel composition of P and (). This can be understood in the

~ same way as the handshake and interleaving of CCS. But differences are on a treatment of

time action, representing the passage of time. Passage of time is fair to all the processes

— 20 —.

9.1. THE CALCULUS: LTECCS S \ 7

composed of |. That is, time action is a broadcast event over |. P\ L, P[S] and uX;.P
respectively means restriction, relabeling and, recursive operator inherited from CCS.

2.1.2 Semantics

This section shows the operational semantics of [TeCCS. The operational semantics is
given as transition based, structural operational rules in two parts: one for action transi-
tions —C P x ‘Act x P and the other for clock transitions ~»C P x T' X P, satisfying the
rules in Table 2.1 and Table 2.2 respectively. '

Table 2.1: Operational semantics for [TeCCS(action transition)

rp - p
aP - P | P+Q % P
Q — . PP
P+Q = @ -~ PlQ = PIQ
Q % PS5 PQ5Q
PlQ = P|Q’ . - PIQ — P|Q
P L) Pl P __‘}__) P'

@EEE P S prg

P\L -% P'\L
P{u X.P/X} % P
ﬂ,z)?ﬁ SN P’

Here We introduce useful sets Sort,(P), which indicates the set of all the actions enabled
in the first step within a given time interval ¢ that P can execute, as shown in Table 2.3
[Wan90]. This is useful to express the “maximum progress” property [NS91], which ensures

that whenever process can perform 7 action, it blocks the progress of time and enforce

8 : : ‘ | o CHAPTER 2. PRELIMINARY

~ Table 2.2: Operational semantics for lTeCCS(cloék transition) " |

040 4 | a.P % a.P

(s+1t).P ~ (t).P t).P -5 P
P P PSS P,QY(Q
t).Pp =& P! P+Q % P +@

Sorty(P) N Sorty(Q) =0

PlQ % P|Q

P4 P RN
P\L % P'\L P[S] ~% P[S]
P{u X.P/X} 4 P

wX.P L P

the execution of an action immediately before some delay; a property that two processes
communicate with each other as soon as they are ready to do so. Formally,

VPP t,Q:P- P =PLQ

So the side condition Sort,(P) N'Sort,(Q) = § in Table2.1 ‘guarantees that there is no
communication within ¢ time units between processes P and (), thus expression at all
means both processes consent to pass time interval L.

' Another important property that ITeCCS possesses is time-determinancy. This prop-
erty ensures that when a process idles for some duration ¢, then resulting behaviour is

completely determined from P and ¢. Namely, the progress of time should be determinis- '

tic, expressed by

——

2.2 LTS(LABELLED TRANSITION SYSTEM) AND RELATIONS OF PROCESSES

IN TPA- 9

Table 2.3: Timed sort for processes

Sorty(Nil)=0 : Sort,((t + u).P) =10
S’Qrtt(a.P) = {a} Sortyyu((t).P) = Sort,(P)
Sorty(.P) ; 0 ’ Sorty((t).P) =10

Sorty(P + Q) = Sort,(P) U Sort,(Q)

Sorty(X) = Sorty(P) whenX “p

VPP .P't: PLP APS P = P =P

 where = is the syntactic equality. The treatment of time passage action of both 4 and
| operator is a device that ensures this property; it ensures this time-determinacy property
that “4+” is not decided by the time passage action and time passage action is broadcasted

to all the processes over “|”.

2.2 LTS(Labelled Transition System) and relations of
processes in TPA | |

In this section, we review the history of relating of processes in TPAs. Although many
“works on timed process algebra are conducted; most of them are proposing a new calculus
with various time constraints to express various aspects of time and a few works conducted
relating processes. ‘ A

First, before we review the relations of TPA, we see the bisimulation relation as an
established relation_bin process algebra. - We also see LTS(Labelled Transition System),
which defines process behaviour, therefore is bais of defining simulation relation. We see
what is LTS of process algebra of 1TeCCS like to be. After that, for considering how we
can reflect real-time property into the relating process in timed process algebra, we see how
is LTS of timed process algebra like to be. Then we see the two relations of TPA which
have already proposed in former works. One of them, is a relation that inherit Milner’s

/ — 23 —

10 | - CHAPTER 2. PRELIMINARY

bisimulation relation and apply it to that of TPAA as it is. And the other is a relation

- which reflect real-time property, therefore relates processes whose behaviour are identical,

but operate at diffefent speed. His idea is good enough to relate processes with respect to
speeds, but we state that his idea is not an essence of real-time property and demonstrate
that it is only an aspect of real-time property.

2.2.1 ,LTS and relations of process algebra

In this section, we review the LTS and the bisimulation relatlon of the most ba51c ‘

process algebra: CCS. ,

In process algebra, the discussion of relating processes is one of the main issues in a
calculus. Processes are related equivalent with the notion of ‘simulation relation’, therefore
equivalence notion defined with the notion of simulation relation are called “bisimulation
equivalence”, which is invented by Park and Milner. The substance of each process in
process algebra is a LTS, which has no start state and also no accepting state. But each
process is a black box to an external observer. Its behaviour is known by interacting with
it in some sequences; We identify-each process with its behaviour by interacting with the
process. Therefore two processes regarded as equivalent if they cannot be distinguished

b

Figure 2.1: La_Belled transition system

by external observers interacting with them. In other words, if the behaviour of two
processes are completely identical from external observers, they are regarded as equivalent.
And this equivalence notion of processes is defined in terms of the notion of simulation.
So, a b1sm1ulat10n relation is defined if one of two processes completely snnulates the

. — 24 —

2.2. LTS(LABELLED TRANSfTION SYSTEM) -AND RELATIONS OF PROCESSES
IN TPA ' A — . 11

behaviotr of the other process. More precisely, it defines behaviour of one ‘process term
are all simulated by the other process and vice-versa, then two processes are regarded to be
bisimulation équivalence. Therefore, the resulting relation is called “bisimulation relation”-

~ The following is the definition of bisimulation relation.

Definition 2 (Strong bisimulation, strong equivalence) A binary relation S C P x
P over processes is a bisimulation iﬁ for all (P,Q) € S and for all a € Act,

(1)if P —a—> P’ then 3Q" : Q —9—> Q and (P',Q') € S; '

(2)if @ 2 Q' then IP': P - Pl and (P, Q') € S; v

We say P and Q are strongly equivalent, written P ~ Q), if there exits a strong bisimulation
'S such that (P,Q) € S. - ‘ ' O

In the definition of bisimulation relation, first relation S which is a binary relation over
states of process is deﬁned. Then to verify this S is a simulation relation, for every pair
(P,Q) € S , we have to consider each transition P -5 @’ of the second member, and show
that is properly matched by some transition P — P’ of the first member Q. And if S
and its converse S~ are simulations, § is said to be a strong bisimulation.

Here we take an example demonstrated in Milner’s book[Mil99]. Consider the following
LTS in figure.2.2.

Figure 2.2:

Then Py ~ @Qo. To prove this, we define

S = {(Po, Qo), (Po, Q2), (P1, @), (P2, Q1)};

- then we show that S is a bisimulation, and this is enough because FySQ.

12 . . - CHAPTER 2. PRELIMINARY

It often hélps to show a bisimulation graphically, by linking the related states on a

transition graph. Take above figure2.2 for example,it looks like figure.2.3- -

Figure 2.3: bisimulation graphically

It is obvious from the definition that the bisimulation equivalence, ~, is an equivalence

relation.

Proposition 1 1. The binary relation ~ is an equivalencerelation over the CCS pro-
| cesses, i.e. followings hold. .

P ~ P (reflezivity) ,

Py ~ P, then P, ~ Py (symmetry)

P~ ‘PQ and Py ~ P3 imply Py ~ Ps (transitivity)

2. ~ is itself a strong bisimulation.
(|

Bisimulation relation is a very fine equivalent notion, reflecting the fact that in concurrent

systems the desbription of process behaviour is more important than what traces or words

processes accept as in-Automata.

2.2.2 Relations of processes in TPA

In this part, we will review the two relations of timed processes, that have been proposed
in preceding researches on TPAs. One of them, which is proposed in the most TPAs; is a

_>26 —

2. 2 LTS(LABELLED TRAN SITION SYSTEM) AND RELATIONS OF PROCESSES
IN TPA ' » 13

normal bisimulation equivalence relation. It inherited Milner’s bisimulation relation and
applied it to the relating system of process of TPA as it is. And.the other is an Mollers
order relation which relates processes with respect to speed. His attempt is new and
interesting in a respect that he reflect real-time property into the relating processe by
relating processes whose functional behaviour is identical but operate at different speed.
Therefore his relation with a notion of speed are called as “faster-than relation” But we
also show the problem of about both equivalence relation in TPAs and Moller’s faster-than
relation.

Stfong bisimula}tion and strong equivalence in [TeCCS

At first, we introduce the most common relation proposed in the most TPAs. In
most TPAs, the discussions of relating processes are straightforward. The relation in
~the works is a what is called “bisimulation equivalence relation” in ITeCCS. It inherit -
Milner’s bisimulation relation and apply it to the relating system of process of TPA as it
is. That is, functional behaviour and temporal behaviour are treated thoroughly in the
. same way; two processes are related if only if they are observed equivalent in both their
functional and temporal behaviour by external observers. Thus the derived relation is a

simple bisimulation equivalence.> This is expressed in the following definitions:

Definition 3 (Strong bisimulation and strong equivalence in [TeCCS)
A binary relation S C P x P over [TeCCS processes s a strong emact time bisimulation if,
for all (P, Q) € S and for all a € Act and for allt €T,

(1) if P> P’ then 3Q': Q — Q and (P',Q’) € S;

(2 if Q -2, Q’ then 3P : P 5 P' and (P, Q') € S;

(3) if P-4 P then 3Q: Q ~ Q' and (P, Q') € S;

(4) if Q5 @ then 3P': P~ P and (P,Q) €S. - o

Definition 4 We say that P and Q) are strongly equivalent, written P~ Q, if (P,Q) €S
for some strong bisimulation S. ' : , O

Here are some propefties of strong equivalence ~ on [TeCCS~.

P\I"(_)positi'on 2

14 | | - 'CHAPTER 2. PRELIMINARY

1. The binary relation ~ 1is an equivalence relation. over the [TeCCS processes, i.e.
followmgs hold.
(1) P~ P (reﬂe:mmty) ‘
(2) Py ~ P, then P, ~ Py (symmetry)
(8) P, ~ Py and Py ~ Py imply P, ~ P (tmnsztzmty)

2 ~ = U{ S |'S is a strong bisimulation on [TeCCS }

O

It is important to prove that the relation is a congruence. This is because it means
that if P ~ @ then, in any system with our constructions, we can substitute the process P
by the other process () without altering the behaviour of the system. This property does
indeed hold. Here we state that strong‘ equivalence is a congruence. ' '

Theorem 1 (Strong equivalence is a congruence)

~ s a process congruence with respect to the operators of | TeCCS; that is, if P ~ Q then
a.P~a.Q . -

P+ M~ ~Q+M

PIQ~Q|M

P[S] ~ Q[S]

(t):P ~ (£).Q

P\L ~ Q\L

S v Lo e =

o

The idea of bisimulation equivalence relation in {TeCCS is straightforward, moreover
poor. Bisimulation equivalence relation on /TeCCS inherits Milner’s bisimulation relation,
which is developed for the functional behaviour, and applies it to the temporal behaviour
as it is. Namely it treats the functional and temporal behaviour of processes thoroughly in

the same way. This may be one approach in the stream of Milner’s bisimulation relation. .
- But apparently it is not a good enough strategy to treat temporal behaviour in the same

way as functional behaviour, because functional and temporal properties are completely
different in their character. It is natural that the time notion is newly introduced into the
system so that we should consider the characterlstlc of the newly-mtroduced time notion

and reflect it to the relatmg systems of processes

- 28 —.

2.2 LTS(LABELLED TRANSITION SYSTEM) AND RELATION S OF PROCESSES
IN TPA , , v 15

Moller’s faster-than relation

vThe_n, what is time p'roperty in timed systems? What is the characteristic property
of time notion? In considering practical timed systerns, one of the most important and
characteristic property of time is real-time property. Real-time property is a property
that guarantees for some action or procedure to be surely completed within a given time
interval. This property plays an critical role in practical timed systems. Therefore it is an

interesting idea to mtroduce thls real-time property into the dlscussmn of relatlng processes

in TPA.

Moller et. al. first introduce real-time property into relating processes [MT91]. They
- paid attention to'the real-time property in timed systems and attempted to reflect real-time
. property into relating processes in TPA. Consequently they invented a new binary relation
over processes, called “faster-than” relation, which relates processés with respect to speed,
based on Milner’s simulation relation. It provides an order relation of two processes, which
relates two processes whose functional behaviour are identical but operate at different
speed. In more detail, with faster-than relation, processes are related if their functional
behaviour are equivalent and one process can execute its function actions faster than the
“other process. The faster-than relation of processes is an ordered relation so that processes

can be compared with respect to their speeds. o,
This is defined as follows: '

Definition 5 (S’trong Moller s faster-than bisimulation, Strong Moller’s faster-than rela-
tion) : .

- A binary relation S C P X P over lTeC’CS processes s a stmng faster—than bzszmulatzon
if, for all (P, Q) € S and for all a € Act and for allt € T,

(1)if P = P'then 3Im, 3Q’, 3Q", IP" : Q > Q' - Q" and P’ < P" with (P",Q") €

S; ’ : : '
(2)if Q= Q' then IP': P =5 P and (P',Q') € S;
(3) if P~5 P then 3Q : Q~5 Q' and (P, Q) € S; |
(4) if Q-5 Q' then IP': P-4 P and (P',Q) € S. | 4 O

Definition 6 We say that P and Q are Moller’s faster-than relation, written P < Q, if
(P,Q) € S for some strong faster-than bisimulation S. a

The characteristic ‘part which expresses “faster-than” propé_rty of this definition appears
in the first clause: If the first (faster) process term can perform a particular action, then

16 v o ~ CHAPTER 2. PRELIMINARY

the second (slower) process term can either perform that action right away and evolve into
a new process state or else it can idle for some time s and reach a state in which it can
pérform the action and thus in doing so evolve into a new process state. In the first case

~ that slower process term evolve into new process state with no delay, the new process state,
‘which it evolved by performing a parti(;ular'action immediately with no delay is also slower

than that into which the first process evolved. In the second case that slower process term
evolve into the new state by performing a particular action with some time interval s, then
while it is necessarily not slower than that into which the first process evolved, but slower

than that state after waiting time which faster process missed out.

~Asan example we would clearly want
Cal ()b = (Dal.(1)b
Now in the faster tefm, the action transition
al ()b = 0] (1)b
is matched in the slower terfn bj/ the sequénce of transitions
‘ (i)a | (1)b L oalb - 0] b«

and while 0 | (1)b % 0 | b we only require ‘in the definition after the clock transition
0] (1)b~50]b,and 0| b~ OIb

In this way, Moller invented a relation which relate processes with respect to speed. .
_ We can see this relation of processes exactly reflects real-time property. We can guarantee

between two processes in the relation of Moller’s faster-than relation the faster process are

certainly ensured to perform all actions faster than the slower process does. That is, we
‘can guarantee the behaviour a process is faster than a criterion process. This faster-than

" relation offers more important significance if it has a congruence or substitutive property.

This is shown in the following proposmon _

This idea of relating way of processes reflects real-time property, because by relating
processes, whose functional behaviour are equivalent, with speeds we can gﬁarantee time
constraint of action occurrence of processes. Hence we can guarantee a process to be

| certainly completed within a given time. It is an imporfan’_c result that the new notion of

real-time property has been introduced into the discussion of relating processes in TPA.

t

2.2. LTS(LABELLED TRANSITION SYSTEM) AND RELATIONS OF PROCESSES -
IN TPA 17

Furthermore this relation is shown to be a precongruence over [TeCCS terms which do
not have any parallel operators within the scope of a recursion. Proof are given in [MT91].

M : ' .
Proposition 3 N is a congruent with respect to the operators of | TeCCS except for par-
allel operators within the scope of a recursion. ' " -
g

_ Problems from Moller’s faster-than relation .

But Moller’s faster-than relation reflects only one aspect -of real—time property. That
is, although we can admit that Moller’s faster-than relation reflect real-time property well,
we can see that this relation expresses nothing more than one aspect of real-time property. -
In the definitions, each action of faster process occurs faster than that of slower process,
however later on faster .process are obliged to wait until correspondmg action of slower
-process finishes. This means that the faster process are obliged to wait the same time as
it preempted the other process by the next action occurrence. For example ¢onsider the
following process term; ‘ :
P = a.(2).P1', P =00

Q= (2)a@;, @ =b0

And‘ we define S; as follows:

S0 = {(P1y @), (P @)}

A Obv10us1y, we can get process S; is a “faster—than relatlon above, P1 Qg, because. P;
executes the first action a faster than (); by two units of time and wait the same clock
it preempted by. Here we can find that this guarantees more than the fact process P is
faster than Q;. That is, it guarantees not only process P is faster than’ @ but also the
fact that their necessary total time for action occurrence. But it is not always necessary
to wait slower process from real-time property viewpoint. Furthermore, in reflecting the
real-time property, it is much more natural and convincing not to wait slower processes. It
is because many systems have a property of “the faster, the better”. For instance, consider ‘
~ the processes; , - »
P,=a.P,, P;=5.0

18 . o 'CHAPTER 2. PRELIMINARY

Q= (1).a.Q) Q=00

And we define S, as follows:
82 = {(P17.Q1)7 (Pllv Qll)}

Intuitively, process P, is faster than.the other process @);. However we unfortunateély
cannot consider such two processes P, and Q; are related from Moller’s faster-than relation,
because process P, does not wait the slower process (); after an action.

'Also we can reflect real-time property into relating processes in TPAs in another way.
We can realize to reflect real-time property, by guziranteeing two processes which operate
at the same speeds. As mentioned already, real-time property is a property that guarantees
for actions or procedures to be certainly completed within a given time interval. And the
notion of same speed can guarantee that actions or procedures are certainly completed

within a given time interval and accordingly can ensure real-time property. Moreover, in

- some real-time system we need not to guarantee the “the faster” notion, but the “the same

speed” or “synchronous” notion, this means occasionally critical in timed syStems.In order
to reflect real-time property, we do not always have to attribute it to a problem of faster

“or not; relations which reflect real-time property do not necessarily have to be an order

~ relation of speéd. Thus, If we can relate two processes whose functional behaviour are

identical and operate at “the same speed”, then this can be also considered as a relation

with real-time prdperty. For example, consider the two processes and relation S3:

Py=a(1).P;, P;=(2).b.P), Py =c0

Q3 = (1)"1'@;37 Qé = b(2) ,3,7. g =c0
83 = {(P37 Q?))?.(PZ;? Qg)a (P?:/a g)} .

This is an -example of two processes that_o'perate at the same spéed.‘ P performs an
action a faster than @3, but in the second action, Q5 operates faster than P;. And for
every action of two processes, the faster process waits the slower pfocess' after executing.
an action. Thus we can say these two processes operate at the same speed so that we can
guarantee between two processes a process are certainly ensured to perform each action at =

the same speed as the other. As a result, although we do not tell which is the faster among

_ these two processes, however, we can see these processes operate at the same speed and

—32 -

2.3. SUMMARY - . N 19

hence in this way time is guaranteed. We can see this is a reflection of real-time property.

- Another problem from Moller’s relation is about the generalization of relation. Moller’s
faster-than relation confines the processes to be related too strictly. That is, Moller’s faster-
than relation lacks the generalization of relation. For example, consider the two processes,

Py =(2).a.(1).P}, Pj=(2).b.2).Q} P/=(2)c0

Q=)o@ Q= @b, Q=()co

To check Py~ @4, we define'S, as follows;
84 = {(P47 P4)7 (PZi’ Pzi)7 (P:? Pzi,)} :

This relation S, intuitively expresses the same speed, because time to be taken for every
action is same. But according to the definition of Moller’s faster-than relation, we cannot
acquire the relation Sy is Moller’s faster-than relation. \So we may well want to construct
more general relation which is more general than the Moller’s faster-than relation. '

2.3 Summary

,We have briefly revie§ved [TeCCS, which is one of TPAS, and the two relations on TPAs
- proposed in the former researches. One of two relations is the equivalence relation, which
“inherited Milner’s bisimulation relation and applied it to that of TPA as it is. The other is
Moller’s faster-than relation, which reflect real-time property and relates processes with re- -
spect to speeds. And consequently proposed order relation of speed “faster-than relation”.
Moller’s faster-than relation is interesting in a réspect that he expressed real-time pfoperty,
~ which plays an imporfant role in timed systems. But we found some problems from both
ejquivalence relation and Moller’s relation. ‘Equiva,lence relation is not prabtical relation in
a respect that time property is ignored. Moller’s faster-than relation is interesting because
it expresses real-time property. But Moller’s relation does not fully éxpress the real-time
property. That is, this Moller’s relation does not reflect a real-nature of real-time property.
Also we saw the problem about generalization of Moller’s relation; the relation is too strict
. so that two processes who have analogous temporal behaviour can not be regarded as in the
relation. In next chapter, we will try to solve the probems concerning to these relations;

we pursue the real nature of real-time property and introduce it into the relating processes -

_ 33

20 ' ' ~ CHAPTER 2. PRELIMINARY

in TPA and propose general relations Which fully reflect real-time properfy.

- 34—

Chapter 3

De‘sig‘n Choices for Re-latiohs' of

Processes with Real-time Pfoperty

- In this chapter, we attempt to reflect real-time pro_ﬁ)erty, which plays an important
role in timed systems, into the discussion of relating processes in TPA. Here we reflect
real-time property into relating processes in TPA as relating processes, which are identical
in functional behaviour but operate at different speed, as Moller did. But we prefer to
state something more general. As we saw in the second chapter, Moller’s faster-than
‘relation is one aspect of real-time property. We can propose some more relations with
various speeds. ‘To begin with, to achieve to reflect the real-time property into the scene
of relating processes in TPAs, arranging various speeds which could be proposed in the
frame work of bisimulation relation. That is, we arrange and classify various speeds with
peculiar property to simulation relation. In such a way, we design real-tirme property in the
framework of bisimulation relation of process algebra. In this way, we show that there are
six relations which respect to real-time poperty in the scene of relating processes in TPA.
" We can see that each of exact bisimulation and Moller’s faster-than relation, which are
shown in former chapter, is one aspect of the result of reflecting real-time property into the
scene of relating processes. Also we see the characteristics of each of relations, including
congruence, and also relation of those real-tirﬁe—reﬂeeted relation. We formalize some
relation of processes which reflects a real-time property and discuss about the pfoperties

or character of these relations. - , , T

CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH

22 ' REAL-TIME PROPERTY

3.1 LTS(labelled tran51t10n system) and relations of
- TPA(Timed Process Algebra)

In this section, we introduce the LTS in [TeCCS. Bisimulation relation is defined on the
basis of LTS so that it is important to see the LTS, which is the descriptien of a process
in [TeCCS. ; _ |

However when we consider constructing a LTS of lTeCCS, we have to deliberate how
to construct it. This is because the transitions of {TeCCS are composed of the functional

- action transition and temporal clock transition. This makes LTS of {TeCCS complicated.

But when we consider the LTS of ITeCCS, which is one of process algebra, we have to pay

. attention to the fact that process algebra is a mathematical model to reasoning about the

behaviour of concurrent systems. We insist that the functional actions of a process are

" main behaviour and temporal transitions are supplement descrlptlon to describe temporal

behaviour of processes And we define the LTS of {TeCCS.

Deﬁnition 7 (Labelled transition system(LTS) of TPA) A labelled.transition sys-

" tem(LTS) over Act and Time is pair (Q,Trans) consisting of

e a set of Q of siates,’

e a ternary relation Trans C (Qx Actx @ U Q x Time x Act xTimex Q U QX
At x Timex Q U QxszexActh U Qxszer), known as a
tmnsztzon relatzon

Definition.8 (Labelled transition system(LTS) of TPA) A labelled tmnsztwn sYs- -

tem(LTS) over Act and Time 1is pair (Q,Trans) consisting of
e a set of Q of states; .
e a ternary relatzon Trans C (Q x sze X Act X sze xQ U 9OxTimexQ),

known as ‘a transition relation. : m

An LTS of I'TeCCS can be thought of as an LTS of untimed CCS with timed transition

around an action transition. -That is, how to transit from a state to another, there are

3.1. LTS(LABELLED TRANSITION SYSTEM) AND RELATIONS OF TPA(TIMED
PROCESS ALGEBRA) ' 23

five kinds of transition as shown in the figure.3.1. As we see in the figure, the main
behaviour of transition is a functional action transition and it accompanies temporal clock
transition before and after the action transition. These clock transitiog,can’be thought as
a time delay impbsed on the action execution; we consider the time transition before action
- transition as a time delay for preparation of the action execution, and the time transition
after.the action transition as time delay for post disposition or a garbage collection of the
action execution. Although we set an action transition as a main behaviour of process in
"transitions, we also take a transition which is composed of temporal clock transition only. v

Also as usual in process algebra this LTS do not have a start state or accepting sates.

- (t1) 4
O G

Figure 3.1: One transition in timed process algebra

An image of an LTS of ITeCCS is like figure3.2;

~ 37 —

CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH

94 | _ REAL- TIME PROPERTY

| Figure 3.2: Timed Labelled transition system

3.2 How to Design Real-time Property into relat_ion
of ITeCCS -

In this section, we examine various speeds that a process operate at in the framework -

of LTS and the notion of simulation relation in TPA. And we propose six relations of speed
relation which reflect real-time pfoperty. To begin with, we review the simulation relation
of TPA, thus LTS of [TeCCS. We consider how we can reflect time property in relating

systems-and how we can design speeds which is peculiar for LTS of ITeCCS and simulation -

relation on the basis of simulation relation of process algebra,. In such a way, We design
real-time property within the framework of simulation relation of process algebra and
propose six relations which all respect real-time prd_perty in the scene of relating processes
in TPA. We will see that each of bisimulation equivalence and Moller’s faster-than relation
.shown in the former chapter, is one aspect of the result of reflecting real-time property into
the scene of relating processes. .

In process algebra, processes are related as equivalent with ‘the notion of ‘simulation
relation’, therefore equivalence not10n defined with the notion of simulation relation are

called “bisimulation equivalence”, which i is 1nvented by Park and Mllner In the definition

3.2, HOW TO DESIGN REAL-TIME PROPERTY INTO RELATION OF LTECCS 25

of bisimulation relation, at first relation S, which is a binary relation over states of process, -
is defined. Then to verify this S is a simulation relation, for every pair (p,q) € S we have
to consider each transition ¢ —%» ¢ of the second member, and show that is properly
matched by some transition p 5 p of the first member p. And if S and its converse are
simulations, S is said to be a strong bisimulation. That is, after define relation S over
state of prdcess, we check if a each transition from a state of pair is matched by the other
in every pair in §. The bisimulation relation is a very fine equivalent notion, reflecting the
fact that in concurrent systems the description of process behaviour or reaction is regarded
as important. A)

In corisic_lering relating processes in [TeCCS, which is one of process algebra, théreforer
it is natural that relations to be proposed should be based on the simulation relation. That
is, we inherit the Milner’s simulation relation, which is fine notion for concurrent processes,
and construct the relating systems of processes within the framework of simulation relation.
So by manipulating the definition of simulation relation, we can f\illy reflect real-time .
property into the relating processes. That is, the real-time property are reflected in the
definition of simulation of processes. In LTS of ITeCCS, each transition of [TeCCS processes
is one of five forms in the figure.3.1. Thus it is important - to consider how each transition
of one process simulates each transition of the other process. The point in the definition -
is how to treat newly-introduced time transitions. In other words; we have to deliberate
how to treat clock transition(temporal behaviour) to reflect the real-time property within
the simulation relation. ' ‘

In such a transition like this, we found two places which can express the speed from
the view point of both the engin‘eeringrand the character of LTS viewpoint. Hence wé can
classify the notion of speed into two kinds of speeds. One kind of speeds is one based on
the timing of the occurrence of action execution. This is the time required for the action.
to occur or fire, indicated by the time ¢; in the figure of fig.3.1. If the time required for an
action to occur-or fire (¢; in fig.3.1) is shorter(faster) than that of the other process, then
we can regard that it.is faster in a respect of the timing of an action occurrence. The other
kind of speeds is one based on the total time required for action execution to be completed,
indicated by the time ¢, + ¢, in the fig.3.1. If the time required for an action execution to
be completed is shorter(faster) than that of the other process, then we can regard that it
is faster in a respect of the total time of action execution. Genef_ally in LTS, which is not
necessarily that of process algebra, it is important to guarantee the total time required for
one transition when we consider the timed LTS. It is because what interact with a LTS is

I |

CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH
26 | . REAL-TIME PROPERTY -

a éomething sequencial. By guaranteeing the total time required for each transitions, we
can guarantee the total time required for a sequence of transitions. Process algebra is not
an exception of those LTS either so that 1t is important to compare the total tlme required

~ for a transition in LTS of TPA.

In this way, we measure the speeds of processes with two kinds of speeds:the time
required for an action to occur(¢;) and the total time required for an action execution to
be completed(t; + t3). Therefore we cla551fy ‘processes w1th the following combmatlons of
these two kmds of speeds. '

1. The time required for action execution to occur (t1 in fig.3.1) is shorter or equal.

2. The time required for whole action execution (¢; + ¢ in fig.3.1) is shorter or equal.

Here we strictly distinguish the notion of the “faster” transition expressed by required
- time is shorter, and the “synchronous” transition expressed by required time is equal. In ‘
real-time systems, we more often than not come across the situations where the notion of .

“faster” and the notion of “synchronous” is critical therefore have to be distinguished.
With the combination of two kinds of speeds .(faster or synchronous), and two places to
reflect them (the time required for an action to occur (¢; in the fig.3.1) or the time required

' for an action execution to be completed (¢ +t2) in the fig.3.1)), we can arrange six kinds of

speeds of process or LTS in [TeCCS. These six relations all guarantee the speed therefore

reflect real-time property. We explain these six variations of speed or relation in turn.

The variation of relation of two processes with speeds

1. The total time required for an action execution of _the faster process to be completed
ot + t3) is equal to that of the other(slower) one (¢} +15). Also the timing of action
~occurrence of the faster process (¢1) is equal to that of the other(slower) one (t}).

t1+tg-t' +, h=1
2. The total time requlred for an action execution of the faster process to be completed
(t; + to) is equal to that of the other(slower) one (¢, +). Also also the timing of

action occurrence of the faster process (¢;) is faster than that of the other(slower)

one(t’)
S hitte=t 4+, t <t

3.2. HOW TO DESIGN REAL-TIME PROPERTY INTO RELATION OF LTECCS 27

3. The total time required for an action execution to be completed (¢; +1,) of the faster
process is equal to that of the other(slower) one (¢, + t,).

t ity =t + 1)

4. The total time required for an action execution of the faster action to be completed
(t1 + t2) is shorter than that of the other(slower) one. Also the timing of action
occurrence of the faster process (1) is equal to that of the other one ().

b+t <ty +ty, ti=t,

5. The total time required for an action execution of the faster process to be completed
(t1 + t2) is shorter than that of the other(slower) one. - Also the timing of action
occurrence of the faster process (1) is faster than that of the other one(#}).

tibty St +th, 0 <t

6. The total time required for an action execution of the faster process to be completed
(t1 + t2) is shorter than that of the other(slower) one.

b+t <t 4+t

| o

Here we can find that the “bisimulation relation” introduced in the former chapter is
expressed by the first case listed above. Also Moller’s faster-than relation is expressed by

the second case. These speed relations are summarized in the table.4.1.4 The symbol of
each relation is also shown in this table: '

| No. | relations symbol || 174 | to 78, |t +1o 7 t) + 1)
1. exact-time equivalent ~ = (=) =
- 2. | action-occurrence-faster-than = < (>) =
3. total-time equivalent <. ' =
4, after-faster-than < = | (L) <
5. fairly-faster-than S < <
6. total-time-faster-than < <

Here in the table the conditii?n surrounded by parenthesis means the condition is in-
ferred from the other conditions. - '

41'

CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH
28 REAL- TIME PROPERTY

All these relatlon reflects dlfferent aspects of real-time property. That is to say, pro-
cesses are related Wlth different speed relation. Bisimulation relation and the Moller’s
faster-than relation are respectlvely included by the exact-time bisimulation and action-
occurrence-faster-than relation. Namely, exact-time bisimulation is a more general relation

than bisimulation relation and action-occurrence-faster-than relation is a more general re-

, lation of Moller’s faster-than relation. -Although these reflect different aspects of real-time

property, these relations themselves are related with each other by descriptive capability.

We explain relation of these relations by descriptive power in order. At first, the first

relation of exact-time equivalence is a special case of the second one of action-occurrence-

faster- than relation and the fourth one of after-faster-than relation; we can acquire DL
and & QN. The second relation of ac_tlon—occurrence-faster—than relation is a special case of
third'relation of total-time equivalence and fifth case of fairly-faster-than relation; ; Ao
and SO, The fourth relation of after-faster-than relation is a special case of third
relation of total-time equivalence; DA, Finally the fifth relation of fairly—fastér—than
relation is a special case of the last one of total-time-faster-than equivalence; S DN

The relation of these relations+are exhibited in the figure below.

In this section, we considered how we can reflect the real-time property into relating
process algebra in [TeCCS. Relating processes of [TeCCS had to be based on the the
notion of Milner’s simulation relation. That is, we had to attempt to reflect real- time
property within the framework of simulation relation. We examined an LTS of (TeCCS
and found there are two kinds of speed of processes. Consequently we proposed six relations
which reflect the real-time property with in the framework of simulation relation. In next
secfioh, we formalize these six relations. Also we consider some properties of each relations,

including a congruence.

3.3 Formalization of ‘relations” with real-time 'prdperty

In this section, we conduct formalization of each relation proposed in the former section.

Properties of each relation, including congruence, are also given with the proofs.

3.3.1 EXact-time bisimulatioh, exact-time equivalence

At first, we formalize the relation of the first case in the table 4.1.4, where the total
time required for an action execution of the faster process to be completed (t; +13) is equal

e |

3.3, FORMALIZATION OF RELATIONS WITH REAL TIME PROPERTY 99

L™

6 .
<t
ot

Figure 3.3: The inheritance elation of the relations

~ to that of the other(slower) one (] +13). Also the timing of action occurrence of the faster
process (t;) is equal to that of the other(slower) one (¢}). Namely, the case of t; = t| and

No. relations 1 symbol || £ 7t} i ty Tty |ttt 7t + 1 l |

{ 1.. | exact-time equivalent ~ | = (=) - ‘

Definition 9 (Strong exact-time bisimulation, strong exact-time-equivalence) A
binary relation S C P x P over | TeCCS processes is a strong ezxact-time bisimulation if,

- — 43 -

~ CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH
30 | ____ REAL-TIME PROPERTY

- for all (P,Q) € S and for all a € Act and for all sl, s2, sy, 85,t€T

(1) if P 5253 P’ then 38}, 35y, Q' : Q ~>—2+3 Q' such that 81 = 8), 81182 = 81+8)
with (P',Q') € S ; - | o S |
(2)ifQ a5 Q' then 3sy, 3sg, IP': P 555 P’ such that s; = s}, s1+83 = s} +8h
with (P,Q) € S ; ' ‘ |
(3) if P~5 P then 3Q : Q~5 @ and (P, Q) € S; : . |
mme$QanMWPéuwmd@mmes. o O

Deﬁnltlon 10 We say that P and Q) are strongly exact-time equwalent written P Q,

if (P Q) € S for some strong exact-time bisimulation S. ' ‘ O

Here are ‘some properties of <.

Proposition 4

1. X is an equivalence relation over the [TeCCS processes, i.e. followings hold.
(1) P X P (reflexivity) '
(2) P, ~ Py then' P, ~ P, (symme‘iry)
(8) P, & Py and Py & P3 imply Py & Pj (transitivity) -

2.% = U{S|Sisa ezact-time bisimulation}
proof |

1. For reﬂexwlty, it is enough to show that the 1dent1ty relation over lTeCCS that is
the relation {Idr eccs} = {(P,P)|P ElTeC’C’S} is a exact-time bisimulation. This
is obv1ous

For symmetry, we have to show that if S is a exact-time blslmulatlon then S0 is its

‘converse S~!. But this is obvious from Deﬁnltlon

For transitivity, we must show that if S; and S, are exact-time bisimulations, then

so is their relational composition
8§18, = {(P,R) | 3Q, P§,Q and QS,R}.

It is enough to show that this is a exact-time simulation. Let (P,R) € &8z, and
P -3 P'. Since there exists @ such that PS;@Q and QS,R, there exist also

— 44 —

3.3, FORMALIZATION OF RELATIONS WITH REAL-TIME PROPERTY 31

Q' such that Q ~>—2-3 ' such that s; = s}, 5, + 50 = 5} + sy and P'§;@’, and
hence R’ such that R ~>-%>3 R’ such that s} = s, s} + s} = s/ + 54 and Q'S; R'.
So (P, R') € 8,5, and we have established the exact-time simulation condition for
$15s. |

2. Let P2 . Then by definition PSQ for some exact tlme b1s1mulatlon S. Therefore
if P 5253 P’ there exists Q" for which Q 5255 Q’ such that s; = s} and
81+ 89 = 8 + s} and P'SQ’ - hence also P’ < (). Thus < satisfies the exact-time

simulation condition and by symmetry so does its converse.

Proposition 5 (Strong equivalence and strong exact-time equivalence) |
P L Q implies P ~ Q
D -

Proposition 6 (Moller’s faster-than relation and strong exact-time equivalence)

PRQ z'%nplz'es P %.Q

The definition and proposition are as follows;
We wish to find which completesthe following diagram:

Theorem 2 (Congruence)

Risa pmcess congruence with respect to the operators of ['TeCCS; that s, zf PX Q then
a.P~a.Q

P+MRQ+M

PlQrQ|M

P[S]~ QlS]

t).P~(1).Q

P\L' X~ Q\L

S A o =

CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH

32 . S REAL TIME PROPERTY

proof We have to prove each of six cases above.
1. At fist, We prove that S = {(a P, a.Q)] PX Q} is a exact-time blslmulamon

(1) Assume that a.P < 52, P' By the assumptlon this transition is dcscrlbed
~asa.P - P. aP—>PthenaQ—>QandP Q C

(2) In the same way as (1).

(3) Assume that a.P ~5 P. From the assumption a.P, we acquire P’ = q.P.b

a.Q ~5 Q and (a.P, a.Q) € S.
- (4) In the same way as (3). |

2. Secondly, we prove that S'= {(P —I—.M , Q+M) | pPL R} is a‘ exact-time bisimulation. -

(1) For any (P+M Q+M) € S, we assume that P+ M 4% P’ Then from

the assumption these trans1t1ons can be described as P+M 5 P+ M’ - <, p

a’

for some M’ such that M 2 M'. There are two poss1b1ht1es for P - M '— P

“in each case we find P’ and for some @', @ + M «»—a—>~> Q' with (P, Q)) €S
i. Suppose P23 P e P has the form a.(s;).P’, and P + M —3 P

Since P ~ @, we have Q 3-23 Q' for some @)’ such that s; = 51, sﬁ—s1
.32+82and(P’Q’)ES‘ ‘
ii. Suppose M’ -*— M", i.e. M’ has the form a".(s3). M”, and P+ M <25
M" 25 P' for some M”. Then Q + M & Q + M’ 2 M 2 P, such that
s1= 51, and s; + 83 = 81 + 89 and (P, P’) €S

) Slmllar to (1).

(2 | , o

(3) We assume that P+ M=% P'. By the assumption, P + M & P+ M’ for some
P-4 P and for some M & M. Since P < Q, thus Q + M~4 O+ M for some
Q4 Qand (P,Q) €S. Wehave (P+M',Q+ M) cS.

(4) Similar tov(3)'. ' |

3. Thirdly, we prove that S = {(P | M, Q| M) | P~ Q}isa exactft/ime bisimulation.‘

(1) For any (P | M,Q | M) € S, we assume that P | M -3 P/ for some
P'. Then from the assumption these transitions can be described as P | M «5‘

C 'P1+M1 .L>P2 | Mz’&Pg (: P’) for some P], PQ, P3, Ml, MQ, M3 such that

3.3. FORMALIZATION OF RELATIONS WITH REAL-TIME PROPERTY 33

P33 P, P,3 Pyand M 5 My, My 3 M;. But here are three possibilities
for P, | My = P, | M, ; in each case we find the forr_ri Py | M, such ‘that
= | Mg_«s\l"»rvP’and that for some @', Q | M ML,,\,) Q' with (P',Q") € S. |
i. P, =% P,, i.e. P, has the form a.Pz, and My = M,. Thus P | M 5P |
My = Py | My '53 Py | Ms(= P'). Since P < Q, we have Q|M ~> { ~ Q|

M, = Q, | M, 3 5 Qs|Ms(= Q') for some @ such that s; = 8p, 81+ 89 = -

sy + sy and (P',Q') € S, as required. ' '

1. P, = P, and M1 —» M,. Since P £ Q, if P53 Pl, then we have Q> Qs
for some @ with P, X Q,. Furthermore, Pl(P2) 3 P3 1mphes 013 Qs
for sorhe Q3 with P; £ Q3. Thus we have Q|M 3 Q1 | My = @ |
M, %, Q3| Ms(= Q') for some Q' such that s; = s}, 51 + 53 = 8} + s, and
(P',Q') € S, as required. ' '

iil. Py LN P, and M, L M, therefore a is a synéhronizatio'n event T, namély '
'a—r Since P & QandP|M G P | My -5 Py | My B Py | Ma(=P'),
‘we have e QL - Q3 Q3 for some Q1, Qz, @3 such that s; = 51,
31+32—81+32andP3 @s. Thus, Q]MMQ1|M1—>Q1|M2M-
Q3| M3(= Q') for some Q' such that s; = 91,51 +s2 = sh +s2 and (P, Q’)
S, as required.

(2) Similar to(1).

(3) We assume that P | M ~5 P. By the assumption, this transition can be
described as P-| M~ Py | M, for some_M«t» M;. Since P2 Q, Q| M~ Q|
M, for some Q > Q1 and (P, Q1) € S. We have (P, | My, Q: | My) € S.

(4) Similar to (3).
4. Next, we prove that & = {(P[S],Q[S]) | P~ Q} is a exact-time bisimulation.

(1) Assume that P[S] 9.3 P for some P'. By the assumption, P’ = P’ [S]
. P £ Q and P[S] %5 P'[S], then Q9] 5a.% Q'[S] for some Q'[S] such
that s, = 'sh, 81+ 81 = sa + 55 and (P’[S] QS) €S

(2) Similar to (1). _ ’ ’

(3) Assume that P[S] % P! for some P'. By the assumption, P’ = P’[. P~ Q’

~and P[S] ~5 P'[S], then Q[S] [] for some Q'[S] and (P'[S],Q'[S) € S

\
\

CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH
34 - REAL-TIME PROPERTY

~(4) Similar to (3) ‘- . | -
5. Here, We prove that S = {(t).P, (1).Q) | P~ Q} is a exact-time bisimulation.

(1) We do not have to consider this éase_.
(2) Simiiar to (1). ‘
(3) Assume *;hat (t).P ~5 P'. From the assumption, We'acquire P'=P. (t).Q 5 Q
and (P, Q) € S. ' '
(4) In the same way as (3). '

6. Finally, We"prove' that S = {(P\L,Q\L) [P <~ Q} is a exact-time bisimulation. -

(1) Assume that P\L 3-2+3 P’ for some P'. By the assumption, P’ = P'\L.
51

P & @Q and P\L 53 P'\L, then Q\L Mi»ié?Q’\L for some @'\L such
that s; = s7,51 + 5] = s2 + 55 and (P'\L,Q"\L) € S '

(2) Similar to (1).

(3) Assume that P\L ~5 P’ for some P’. By the assumption, P’ = P'\L. P ~Q
and P\L ~5 P'\L, then Q\L ~% @'\ L for some Q'\L and (P'\L,Q\L) € S

(‘4) Similar to (3)

3.3.2 Action-‘occurrehce-faster.—than_relat'ion

Here we formalize the relation of the second case in the table 4.1.4, where the total time
required for an action execution of the faster process to be completed (¢; + t3) is equal to
that of the other(slower) one (t; + ;). Also the timing of action occurrence of the faster
process (t1) is faster than that of the other(slower) one (¢;). Namely, this is the case of

by < thand ty 4ty = t) + t).

| No. |- relations ~ | symbol ‘ LT [te 78y |t +ta 78]+ 1)
2. | action-occurrence-faster-than K < (>) =

- 48 - N

e

3.3. FORMALIZATION OF RELATIONS WITH REAL-TIME PROPERTY 35

Definition 11 (ﬁc—bisimulation, acti0n—occurrence—faster-than relation) A binary
relation S C P x P over [TeCCS processes is a strong ~ -bisimulation if, for all (P, Q) €S
and for all a € Act and for all 1,8}, 489, €T, . : A
(1) if P53 P then 35, 3s), 3Q, © Q 3B Q' such that 51 <),
$1+ 89 =8+ 8, and (P',Q') €S ; ' : ' '
(2) if Q 5_e,% Q' then 3sy, 3si, 3P 0 P -3 P osuch that s, <),
31+82~81+32and(P’Q)€S '
()sz«»P’thenElQ’ QMQ'and(P Q) e S; _
(4) if QY Q then AP . P~L P/ cmd(, Q) eS. ‘ O

Definition 12 We say that P and @) are strongly action-occurrence faster—than relation,
written P~ Q, if (P Q) eS for some stmng ~ —bzszmulatzon S. ' o

Here are some properties of *~

Proposition 7

ac

1. ~ is an partz'al order relation over the l TeCCS processes, i.e. followings hold.
(1) P~ P (reﬂemmty) \
(2) PN Pand P~ P then P, = P, (asymmetry)
(3) P, X" Py and Py % Py imply P, % Py (transitivity)
2. K = U{S|Sisa - bisimulation}
proof:
~ 1. For reflexivity, it is enough to show that the identity relation over [TeCCS, that is the
relation {Idirecos} = {(P, P)|P € ITeCCS}, is a < -bisimulation. This is obvious.

- For asymmetry, we have to show that if P, ~ P, and P, < P, then P, = P,. From |
the definition, if P 2 P, then s; < s, also if P, ~ P, then s < s;. Therefore

51 = s}. From the definition s; + 52 = s} + 5, s0 s = s;,. We can get P, = P,.

For trans1t1v1ty, we must show that if S; and S, are ~ -blslmulatlons then so is then"
relational composition

88, = {(P,R) | 3Q, PSiQ and QS,R}.

CHAPTER 3 DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH
36 : A -+ REAL-TIME PROPERTY

It is enough to show that this is a - simulation. | Let (P, R) € 5153, and P 513

. Since there exists @ such that PSQ and QS;R, there exist also @' such that

Q@ le’»————n» Q' such that-s; = s}, s = s and P'§;Q', and hence R’ such that

R348 R such that sy = s, sy = s5 and Q'S R. So (P',R') € 8182, and we
.have estabhshed the ™~ - simulation condltlon for $1S,.

2. Let P Q Then by definition PSQ for some <~ -bisimulation S. Therefore if

Py P', there exists Q' for which Q ~>-*>3 @' such that s; = sg, 8} = s}

and P'SQ" - hence also P’ %~ @'. Thus < satisfies the * - simulation condition and

by symmetry so does its converse.

| | | =

It is clear from the similarities in the definitions of & and = that for P and @ being two

terms of [TeCCS, if P ~ Q' then we can acquire P v (). However the reverse implication
does not hold; that is, P *~ Q does not always imply that P ~ Q. ThlS is shown in the ,

following Proposition.

Proposition 8 (Moller’s faster-than. relatlon, strong act10n-0ccurrence—faster-than rel

P <,\Af Q implies P < Q
O

We here state the notion of ’simulation up to’. In [Mil99], this notion of ’simulation
up to’ is introduced and shown why it is useful. A completely analogous result holds for
—blsunulatlon up to ~ The definition and proposition are as follows;

Definition 13 (Strong ~ -blslmulatlon up to ~)
A binary relation S c P x P over 1 TeCCS processes is a strong kS —bzszmulatwn up to '\Af
if, for all (P,Q) € S and for all a € Act and for all 51,81, 80,85, t €T, such that s1 < sl

cand 81+ Sg = sy + 85

(1) if PBB P then3 s, 85 3Q: Q3-8 @ and P s o
(2) if QB8 @ then I sy, 5, IP: PBSB P and PR S Q)
(3) if P~ P then 3Q": Q-5 Q' and (P, Q') € S; B

(4) if Q% @ then AP': P~5 P’ and (P',Q") €S.

—SO-TI

- 3.3. FORMALIZATION OF RELATIONS WITH REAL TIME PROPERTY 37

Thus for S to be a strong simulation up to < we must be able to complete the following
diagram, given the top row and the left transition: ‘

PSQ
a/ ' v\/a
pess g

Figure 3.4:

Proposition 9 If S is a strong < bisimulation up to L andP S Q, then' P < Q.

pl‘oof: Clearly P'S Q implies p <L Q. So it Will be enough to show that
PSS Qis a btrong ‘~ bisimulation, for then P 8§ % Q implies P <r\A’lQ and we
are done. Let P.% & ~ Q implies P % Q and P RCINL - P'. We wish to find Q'
“which completes the followmg d1agram.

=
P =~ 8 <M

| [:'

W
- ‘Q
Pi

Figure‘3.5:

To do this, first note that for some P, and); we have P < P, PSQ, and @, < Q.
Thus with the help Proposition 6 and knowing that S is a <ric—bisimulation up to ?34’ we
can fill in the followmg three d1agrams in sequence form left to right: Composmg these,
using the transitivity of f\J»W we obtain the required d1agram ' S . o

Unfortunately, < is not a congruence for all operators of ITeCCS. Th1s can be shown
by a counter exmpale As an exmniple, we take the following processes

S |

: CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH

38 _ - REAL-TIME PROPERTY

. {;’*{ : &.J”. ;

P &y Oy o~ 0
al l l/ \a al e

Ff "?%if ;g 1}(‘5{ i" 5 _.e‘ {;F . (21 vd;ﬂif {‘Qﬁ .

Figure 3.6:
¢
and

~ Clearly we cém_ establish that

P = a.(3).b.0. X (1).a.(2).6.0 = P,

But when we take M = (2).a.(2).b.0 and compose process PIS' and P, with the process M,
then we acquire P, | M 7@‘ P, | M Obviously, the left hand side

PM = a(3)b0] 24250858 pyM o

* On the other hand, right hand side is | | , /

P M = (1)a.(2)b0] (2250 328 M o0

ac

And we cannot acquire P;|M < P|M, hence Py|M < P,|M. This example shbw_s that
~ is not preserved by parallel operator ‘

“|”. However we have the followings:

Theorem 3 (Congruence for [TeCCS)

ac

~ 1is a process congruence with respect to the operators of lTeCCS ezcept for pamllel

operater “|"; .
that is, if P~ Q then
1. aP<maJCa
2. P+M™~ Q+M
4 PISIE QIs)
5 (0P % (0).Q
6. P\L< Q\L

— 52—

3.3\. FORMALIZATION OF RELATIONS WITH REAL-TIME PROPERTY 39

- O

The problem arises from the semantics of “|”. So we here slightly change the semantics .

of ZTeCCS as follows.

[44 |l/

POP, Qb
PIQP|Q

And we call kTeCCS, which have the semantics above.
With the language kTeCCS, we can have the following.

‘Theorem 4 (Congruence for kTeCCS) :

X s a process congruence with respect to all the operators of kTeCCS; that is, sz ~ Q
then ' ' :

a.P a.QQ ,

P+M<Q+M

PIQ~ QM

P[S] % QI[S] -

(1)-P~ ()-Q

P\L Q\L

D S o v o~

prdof: We only demonstrate here the different part of the proof of subsitutivity in £TeCCS
from [TeC€CS, that respect to the parallel operator . The others are similar to those of <.

3. we prove that S = {(P | M, Q | M) | P <rfch} is a % -bisimulation.

(1) For any (P | M,Q | M) € S, we assume that P | M 5“3 P! for some P'.
- Then from the assumption these transitions can be described as P | M2 P1 |
My, = P | My 3 P3 (= P') for some P, Py, Ps, My, My, Ms: P =5 P,
P 2 pyand M3 M, M, 3 Ms, such that s; = 3; + 5; and s, = 85 + 5.
But here are three possibilities for P | Ml' —=5 P | M, ; in each case we
find the form Pz | My such that P, | My 23 3 P’ and that for some Q' 81, s

Q \ M«»——%«» Q' such that s; < s/, s1+s2 = 51 + s, with (P, Q') € S. A
i P, % P, ie. P, has the form a.Py, and M; = My. Thus P | M %
P | My =% Py | My 3 Py | My(= P'). Since P 5 Q, we have Q|M 5

40

' CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH -
REAL-TIME PROPERTY

Q1| My = Q, | My 3 Qs|Ms(= @) for some Q' such that s; < s},
$1+ 82 =5y + sy and (P, Q') €S, as required.

ii P, =P, and M; — M2 Since P ~ Q if P Pj, then we have Q ~ Q1

for some Q; with P, *~ Ql Furthermore, P, (= P;) 3 P3 implies @1 ~3 Q3

for- some. Q3 with Py~ Q3 Thus we have QM SN Q1 | My - @ |

M 3 Q3| Ms(= Q') for some Q' such that s; < 31, 1+ 83 = 87 + 55 and .‘

(P,Q) €8, as requlred

iii P —> Pg and M1 LN M, therefore a is a synchromzamon event T, namely
a=r. SlncePlM P1|M1~—>P2]M252P3|M3(,—P’),QIM‘
Q1 | M, = Q1 | MZ 3 Qs|Ms(= Q') for some Q. Here we ‘consider
Q 3 Q1, Q2 3 Qs, such'that s, = 8] + 5, and s = 52 + 3,. Since P~ Q,
accordingly s; < s}, s + sa = s} + s5 and (P, Q') € S, as required.

(2) Similar to (1).

(3) We assume that P | M ~ P'. By the assumption, this transition can be

~ described as P | M ~% Py | M; for some M 4 M. Since P. % Q, Q | M

Q@ 1 M, for some Q AN Qq and (P1,0Q1) € S. We have (P '].'Ml,Ql | M7) € S.
(4) Similar to (3).. | '

3.3.3 | Strong total-time equivalence

total time required for an action execution of the faster process to be completed (t1+1t2) is.

In this section we formalize the relation of the third case in the table 4.1.4, where the

equal to that of the other(slower) one (t’ + t3). Namely, this is the case of ty+ta =t +15

No. relatlons symbol 87t [ta Tty | 1+t ? t +t l

3. | total-time equivalent X o | =

Namely, we formalize the binary relation of processes whose functional behaviour is

identical but operate at the speed in the 3rd case of speed comparison in the tabled.1.4.

We deem two functionally equivalent processes, ‘Where two processes operate at the same

_speed in their total time to be related even if they are d1fferent from each other in timing

of action occurrence. This is formally defined as follows,

f—.54—

3.3. FORMALIZATION OF RELATIONS WITH REAL—TIME PROPERTY | 41

. Definition 14 (Strong total—tlme b1s1mulat10n, strong total—tlme equlvalence) A
mary re atzon X P over [1e processes is a strong total-time bisimu atzon if,
bi l SCPxP [TeCCS [bi ['

-~ for all (P, Q) €S and for-all a € Act and for all s,t € T,
(1) if P~ 39,3 P hen, 35!, 3sh, 3Q'": Q 5_e,% Q' such that s, +82 =g +52 and '
- (PLQ) e S _'
\ (2) zfQ B-2,3 Q’ then dsq, dsy, AP': P B a, ~5 P’ such that s;+ s3 = s} + s5 and
(P, Q)esS;:

(3) if: P~ P then 3Q" QMQ’ and (P’ Q)€ S;

(4) zf Q% Q' then EP’.PM P’ cmd,(P’, " es. o » o O
Definition 15 We say that P and Q are stmngly total time equivalent, written P Q, if
(P,Q) € S for some strong total- tzme bzszmulatwn S : L _D

Here are some properties of L.

Proposition 10

1. A% is an equivalence relation over the [TeCCS processes, i.e. followings hold.
(1) P X P (reflezivity)
(2) P, ~ L P, then P, X P, {symmetry)
(3) P~ L Py and P, & Py imply P, ~ L p (tmnsztzmty}
2. & = U{S | S isa total-time bisiniulatzon} |
proof: |

1. For reflexivity, it is enough to show that the identity relation over lTeCCS, that is
the relation {Idirecos} = {(P, P)|P. € ITeCCS}, is a bisimulation. This is obvious

For symmetry, we have to show that if S is a bisimulation then so is 1ts converse

S 1. Let (P, Q) €.S. Then from definition, it is obvious that Q 5253 @ and
" PR35 Pwith (Q P') eSS .

For transitivity, we must show that if S; and S, are bisimulations, then‘so is their

relational composition

58, = {(P,R)|3Q, PS,Q and QS,R}.

CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH
42 : : - REAL-TIME PROPERTY

a

It is enough to show that this is a simulation. Let (P,R) € $;S;, and P 53

Smce there exists Q such that PS;Q and QS,R, there exist also Q' such that
Q 2533 (' where 81+ = sy+sh, and P'S;@Q)’, and hence R’ such that R RLIN »
R', where 57 + 53 = 8] + 85, and Q'S; R'. So (P, R') € 5,53, and we have established

the simulation condition for &;Ss.

2. Let P £ Q. Then by definition PSQ for some total time bisimulation S. Therefore
- if PRA-53 P there ex1sts Q' for Wthh Q 5253 @', where s, + Sy = 81 + 8y,
and P'SQ’ - hence also P’ £ . Thus ~ satisfies the simulation condition and by

symmetry so does its converse.

a

Proposition 11 (Strong exact-time equivalence and Strong exact-time equivalence)

P,ACJ Q implies P~ Q

Definition 16 (Strong total-time -bisimul_atioh up to ~)
A binary relation S C P x P over | TeCCS processes is a strong total-time bisimulation up
to ~ if, for all (P,Q) € S and for all a € Act and for all 5,t € T, 51 + 59 = 8| +)

(1) if P «»—‘—l—m» P’ then 3 51, 59 3Q': Q«»iwfi Q and PP~ S~ Q'

(2) if Q 5253 Q' then I sy, 5o IP': PA B P and PP A S S Q'

(3) if P~% P then3Q : Q% Q' and (P, Q) € S;

(4) f Q5 Q' then3IP': P~ P and (P',Q) € S.

’ O

Thus for S to be a strong simulation up to < we must be able to complete the following
diagram, given the top row and the left transition: ‘

Proposition 12 If S is a strong bisimulation up to ~ and PSQ, then P ~ Q. ‘

proof: Clearly PSQ implies P ~ S < Q. So it will be enough to show that P < S ~ Q
is a strong total-time bisimulation, for then P < 8§ £ @ implies P ~ Q and we are done.

" — 56 —

- 3.3.. FORMALIZATION OF RELATIONS WITH REAL-TIME PROPERTY 43

Let P~ &< Q implies P ~ Q and P -3 P, We with to find Q' which completes
the followmg diagram:

To do this, first note that for some P, and Q1 we have P < P, PlS ~ @ and Q ~ Q.
Thus with the help Proposition 6 and knowing that S is a strong bisimulation up to ~,We
can fill in the following three diagrams in sequence form left to 'r'ight:

Composing these, using the transitivity of ~, we obtain the required diagram O

Theorem 5 (Congruence for [TeCCS)
& 18 a process congruence with respect to the operators of l TeCCS ea:cept for pamllel oper-
ater “|” , O

'Theorem 6 (Congruence for kTeCCS)
X is a process congruence with respect to all the operators of k TeCCS.

proof: The proof is similar to that of ~. . ‘ o

3.3.4 Strong after-faster-than relatiOn

- Here we formalize the relation of the fourth case in the table 4.1.4, where the total
time required for an action execution of the faster process to be completed (t1 + to) is
shorter than that of the other(slower) one. Also the timing of action occurrence of the
faster process (t;) is equal to that of the other one (¢}).

No. l relations symbol || t478] | ta 785 | 1+t T t] + 1)
af .
4. | after-faster-than kY = | (<) <

Definition 17 (N -blslmulatlon, after-faster-than relation) A binary relation S C
P x P over | TeCCS processes is a stmng < _bisimulation zf, for all (P,Q) € S and for all
. a € Act and for all 51,8}, 89,85, t € T, :
(1) if P 5% P’ then 3s}, 3sh, 3Q',: 308 O such that 1 =), 51+ <
sy + 84 with (P’ Q’) €S, ‘
(2) zfQ 253 Q' -then Hsl, 3sj, IP,: P2 ~‘—z—+ P’ such that sy = s'l, S1+ So S
sy + sy with (P, Q') € S ; , | ‘ a
(3) if P~5 P then 3Q": Q% @ and (P, Q') € S;
(4) if Q% Q then IP': P~H P and (P, Q') € S.

~ Here are some propertles of ~

‘CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH
4 - ‘ REAL TIME PROPERTY

Deﬁnltlon 18 We say that P cmd Q are strongly aﬁer-faster—than relatwn written P~
Q, if (P,Q) €S for some strong ~ —bzszmulatzon S. v N
af _

‘Proposition 13 .

1. < is an pai’tial order relation over the [TeCCS tbrécesses, i.e. followings hold.
(1) P~ P (reﬂea:wzty)
(2) P, ~ P2 and P, ~ P1 then Pl P2 (asymmetry)
(3) P1 ~ Pz and Pg ~ P3 zmply P~ P3 (tmnsztzmty)

2. ¥ = U{S { S is a - bzszmulatwn}

proof:

1. For reﬂex1v1ty, it is enough to show that the 1dent1ty relatlon over [TeCCS, that is the
relation {7 leeccs} {(P,P)|P €lTeCCS } isa -blslmulatlon This is obvious.

For asymmetry, we have to show that if P, < P, and P, ~ Pl then P, = P2 From
af . af

the definition, if Pl ~ P, then s1+3s3 < s)+55, also if Py~ P then s} +s5 < s1+52.

Therefore S1+ Sg = sy + sh. From‘ the definition s; = &, so-ss = s5. We can get

P =P S

For transitivity, we must show that if S; and S, are “~ -bisimulations, then so is their

relational composition

$8; = {(P,R) | 3Q, PS:Q and QS,R}.

a S2

Tt is énough to show that this is a S - simulation. Let (P, R)le 85,8,, and P 2533
P Since there exists Q Such that PS;Q and QS,R, there exist also Q' such that
Q SULIVCY @’ such that s; = s, 81+82 < sh+ sy and P'S;Q)’, and hence R’ such that
R32.% R such that sy =5y, sy +sy <+ sy and Q'S R So (P',R) € 8182,
and we have established the < simulation COIldlthIl for 8182

2. Let P~ Q Then by deﬁmtlon PSQ for some <~ —blslmulatlon S. Therefore 1f ‘

P e, 9,% P/ there exists ' for Whlch Q M——;M Q' such that s; = s, s1 + s <

: af af
s+ 32 and P'SQ’ - hence also P’ * Q’ Thus % satisfies the X - simulation

condition and by symmetry so does its converse.

— 58 —

33 ', FORMALIZATION OF RELATIONS WITH REAL-TIME PROPERTY 45

a

_Proposition 14 (Exact-time faster-than relation, strong after-faster-than relation)

P £ Q implies P < Q

'Definition 19 (Strong ~ -b1s1mulat10n up to <)
A binary relation S C P x P over [TeCCS processes is a strong ~ -bzszmulatzon up to ~
if, for all (P,Q) € S and for all a € Act and for all s1,), $2,55,t € T, such that s; = s

‘andsl+52<51+32

(quvi%ﬁpmmaﬁﬁﬁm'Qiiihymwp~s~q;
(@UQM—*»QMMH%@HPI”thpamywS&Q;
(3) szM P then3Q : Q5 Q' and (P, Q) € S;
CU)if QS Q thenIP P4 P and (P',Q) € S.

‘ Proposition 15 IfS 1sa strong < _bisimulation up to ~ and PSQ, then P < Q.

~proof: Similar to Theorem 3.

Theorem 7 '(Con’gfuence for ITeCCS)

of
~ s a process congruence with respect to the operators of lTeC’C’S ezcept for parallel
opemter ”.) o ' o

Theorem 8 (Congruence for k'TeCCS) .
< isa process congruence with respect to all the operators of k TeCCS.

proof: The proof is similar to that of <. o ' o

'~ 59 —

CHAPTER 3. DESIGN CHOICES FOR RELATION S OF PROCESSES WITH

46 ‘ . REAL-TIME PROPERTY

3.3.5 Strong fairly-faster-than }relation)

Here we formalize the relation of the second case in the table 4.1.4, where In this section,
where total time required for an action execution of the faster process to be completed
(t1 +t2) is shorter than that of the other(sldwer) one. Also the timing of action occurrence
of the faster process (¢;) is faster than that of the other one(t}). Namely, this is the case
of ty St by +ty <t +1. | |

No. relations symbol | t17t) ‘ ty 7), | ty -+t Pt +th [
5. | fairly-faster-than | = < : < '

Definition 20 (Strong X-bisimulation, Strbng fairly-faster-than relation)

‘A binary relation S € P x P over [TeCCS processes is a strong S-bisimulation if, for all

(P, Q) €S and for all a € Act and for all sy, 81,85, 52,t €T, .
(1) if P33 P’ then 38, 3s), 3Q',: Q SR @', such that s; < sy, 81+ 83 <
s, + s, with (P',Q") € S ; - : ‘
(2) if Q 5= Q' then 35, Ts,, IP',: PB-"23 P/, such that s, < s}, 51 + 55 <
s +sh, and (P,Q) €S ; | | S
(3) if P~ P then 3Q' : Q% Q' and (P, Q) € S; | 4
4) if Q5 Q' then 3P : P~% P and (P',Q') € S. | O

Definition 21 We say that P and @ are strongly fairly-faster-than relation, written. P <
Q, if (P,Q) € S for some strong S-bisimulation S. . o O

~

Proposition 16 The binary relation < is a partial order over 1 TeCCS processés,‘z’.g. the
followings hold: ' o

(1) P S P (reflexivity) ,

(2) P, S P, and Py S Py imply Py S Pj (transitivity)

(8) P, S P, and P S P imply Py = P (asymmetry)

proof:

3.3. FORMALIZATION OF RELATIONS WITH REAL-TIME PROPERTY 47

1. For reflexivity, it is enough to show that the identity relation over [TeCCS, that is the
relation {Idireccs} = {(P, P)|P € ITeCCS}, is a S-bisimulation. This is obvious.

For asymmetry, we have to show that if P S P and P, N P then P, = P;. From
the definition, if P, S P, then s, < shy 81482 < 81+ 85, also if Ps < P, then 87 < 89,
s+ sh < 81+ s9. Therefore's; = 7, s1+ 52 = s + 85 and s3 = s}. Consequently, we
can get P, = P;.

For transitivity, we must show that if S; and S, are S-bisimulations, then so is their

relational composition

518, = {(Pa R) | 3Q, P&:Q and QSQR}~

a 82

It is enough to show that this is a S- simulation. Let (P,R) € 3182, and P 5538
P’. Since there exists Q such that PS;Q and QS,R, there exist also @' such that
5053 such that s; < s}, s1+82 < 57+85 and P'§,()', and hence R’ such that
'R~5-%33 R such that 8| < s, s, + s, < s + s and QSR So (P, R) € $5,
and we have established the ~- simulation condition for 85:18s.
2. Let P £ Q. Then by definition PSQ for some S-bisimulation S. Therefore if
P 52,33 P’ there exists (for which Q ~5>—25-3 Q' such that s; = 55, 51 + 83 <
s| + s} and P'SQ’ - hence also P’ S Q'. Thus < satisfies the - simulation condition

and by symmetry so does its converse. -

0
Proposition 17 (Strong fairly-faster-than relation)
P Q implies P S Q
p< Q implies P S Q

O

Definition 22 (Strong-S-bisimulation up to <)
A binary relation S C P x P over [TeCCS processes is a strong §<»—bisz'mulatz’on up to <
if, for all (P,Q) € S and for all a € Act and for all 51,5}, 5,85, t € T, such that s; < s

and s; + s3 < 8§ + 4

S U— |

CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH
48 ‘ - REAL-TIME PROPERTY

(1) if P «s»i>f3f> P’ then 3 s, s, 3Q': Q«»——M» Q and P ~S8 ~Q';
(2) if Q >3 Q' then 3 sl, sy IP': P53 P and PS8~ Q'
(3) if P P thendQ : Q-5 Q and (P,Q) € S;
(1) if Q% @ then AP : P~ P and (P, Q') € S.

/

- Proposition 18 If S is a strong S -bisimulation up to X and PSQ, then P < Q.

Definition 23 (Strong S-bisimulation up to ™)
A binary relation S C P x P over [TeCCS processes is a.strong S-bisimulation up to <

if, for all (P, Q) € S and for all a € Act and for all s1, 31,32,52,t E T, such that sy < s}

and51+82<81+52
(1) if P53 P then 3 s}, 52 Q' : Q«»—»M Q' and P’ S~@;
(2)if Q5% @ then3 sy, 5, 3P PBB P and P~ S ~ Q';
(3) if P~5 P’ then 3Q : Q5 Q' and (P, Q) € S;
(4)if Q4 @ then3IP' : P-L P and (P,Q) €S.

Proposition 19 If S is a strong S -bisimulation up to < and PSQ, then P S Q.

a

We show here that S is congruence (substitute) over [TeCCS terms except for parallel

operater “|”. .

Theorem 9 (Congruence for [TeCCS) 55 is a process congruence with respect to the

operators of L TeCCS except for parallel operater “ |". : O

Theorem 10 (Congruence for kTeCCS)
< is a process congruence with respect to all the operators of kTeCCS.

proof: The proof is similar to that of ~. ‘ , |

3.3, FORMALIZATION OF RELATIONS WITH REAL-TIME PROPERTY 49

3.3.6 Strong total- tlme—faster—than relation

Finally, we formalize the relatlon of the sixth case in the table 4.1.4, where the total -
time required for an action of the faster process execution to be completed (t; + t2) is
shorter than that of the other(slower) one. This is the case of t; +t5 < ¢} + t5.

No. _ relations symbol || t,7t] | ta 7th | &1 +t2 T + 1]

6. total-time—f@ster—than = <

Definition 24 (<~t-bisimulati0n, total-time-faster-than relation) A binary relation
S C P x P over 1 TeCCS processes is a strong < -bisimulation if, for all (P,Q) € S and for
“alla € Act and for all s1,8), so,8h,t €T,

(1) if P 3-25°3 P’ then 3sy, dsh, IQ': Q NIV Q’ such that sy + sy = 5] + 55,
and (P, Q") € S ; . : ‘
- (2)ifQ ACRILAV Q’ then 331, 331, P, P35 P such that sy + s = s} + 53,

and (P,Q)eS; ’

(3) if P-4 P then 3Q: Q5 Q and (P, Q) € S; N
(4) if Q4 Q then 3P : P-4 P and (P',Q) € S. : O

Deﬁmtlon 25 We say that P and Q are strongly total-time faster—than relation, written
PX Q, if (P,Q) € S for some strong < -bisimulation S , : a

, . g
Here are some properties of ~.

Proposition 20

1. & isan partial order relation ovér thé [TeCCS processes; i.e. followings hold.
(1) P~ £ P (reﬂexz'm’ty)
(2) P X P2 and Py & P1 then P = P2 (asymmetry)
- (3) Py ~ P2 and Py ~ P3 imply P, & P3 (transitivity)

2.8 = U{S|Sisa - bisimulation}

CHAPTER 3. DESIGN CHOICES FOR RELATIONS OF PROCESSES WITH
30 _ _ REAL-TIME PROPERTY

1. For reflexivity, it is enough to show that the identity relation over [TeCCS, that is the
-relation {Idirecos}t = {(P, P)|P € ITeCCS}, is a ﬁ—bisirnulation. This is obvious.

For asymmétry, we have to show that if P < P and P < P, then P, = Pé. From
t . t)

the definition, if P, X P, then sy 455 < 8]+ sor, also if Py < P; then s1+s5 < 51+ 9.

Therefore s; + so = s} + s5. From the définition s; + s3 = s} + s5,.80 s5 = s,. We

can get P, = P,. '

For transitivity, we must shovv that if S; and S, are ~ —b]Slmulatlons then so is their
relational composition

518, = {(P,R) | 3Q, PS:Q and QS,R}.

It is enough to show that this is a <- simulation. Let (P,R) € 5:5;, and P SUSLINIY
P Since there exists @) such that PS;Q) and QS R, there exist also @' such that
Q ACHILIV. Y @' such that s; = s, s, = s3 and P'5:Q’, and hence R’ such that
R 523 R’ such that sy = s, sh=s5 and QSR. So (P',R) € 5§, and we
have established the ~- simulation condition for 3182 ' '

2. Let P.~ Q Then by deﬁnltlon PSQ for some N—blslrnulatlon S. Therefore if
P18 P there exists Q’ for which @ A VILIVS Q’ such that S = 8g, 8§ = s
and P’SQ’ hence also P’ & - @'. Thus < satisfies the ~- simulation condition and

by symmetry so does its converse.

O

It is clear from the similarities in the definitions of 2 and < that for P and (@ being two

- terms of [TeCCS, if P <~) then we can acquire P <). However the reverse implication

does not hold; that is, P < Q does not always imply that P ~ Q. This is shown in the
following Proposition.

Proposition 21 (Strong fairy-faster-than relation, strong total-time-faster-than relati

P Q implies PR Q

— 64 —

3.3. FORMALIZATION OF RELATIONS WITH REAL-TIME PROPERTY 51

Definition 26 (Strong‘ <Nt-bisimulation- up to S
A binary relation S C P x P over [TeCCS processes is a strong < -bisimulation up to S
if, for all (P,Q) € S and for all a € Act and for all sy, 8}, s9,.85,t € T, such that s; < s’l‘
and s + s = s + s} L
(1)if P33 P then3 s, 8,30 Q353 Q and P ~ S~ Q'
(2) if Q 595 O then 3 sy, 53 AP PB—SB P and P' v S~ Q'
(3) if P~ P then3Q : Q4 Q and (P,Q) € S; |
4) if Q4 Q then AP : P~ P’ and (P,Q) eS.

Proposition 22 IfSisa étrong ezact-time bisimulation up to S and PSQ, then P Y Q.

~ Theorem 11 (Congruence for [TeCCS)
X is a process congruence with respect to the operators of [TeCCS except for parallel oper-
ater “|". ' . O

Theorem 12 (Congruence for kTeCCS)
Lisa process congruence with respect to all the operators of kTeCCS.

proof: The proof is similar to that of <. | o

EI/‘

Chapter 4

- Examples
4.1 Timed queue system | N AR
4.1.1 asic system of queue system

We would like to build a timed queue system Queue-system, which is compOéed of

the three components, Queue, Enque, Deque. The component Queue is a bbdy; part of

Queue-system. It has - box to accept balls, which is considered to be a capacity of 7 7,

“and it stocks balls pushed into. Traditionally, balls are pushed into the Queue component.
with push operation and popped out from it with pop operation. If balls are tried to pushed

into the corﬁp_oneﬁt Queue which is full in its capacity, then the compbnent Queue thrpws
an overﬂow»exception. Similarly, If balls are tried to pop out from the component Queue
which is empty in its stock, then the component Queue. throws an underflow exception.
The component Enque is 'a component which ‘pushes ‘balls’ into the component Queue.

" And the component Deque is a component which pops ‘balls’ out from. the.component

Queue. The image of the Queue-system composed of the thee components is shown. in

~ figure.4.1.

4.1.2 Constructing queue system with untimed CCS

First we construct this system with untimed CCS. The first process to-be defined is the
Queue component. An -ary ueue Queue™ (push, pop, overflow, underflow) is a process
used to express the Queue component witha capacity - . And the defining equations for

-ary ueue is as follows:

41. TIMED QUEUE SYSTEM - ') 53

Figure 4.1: Queue system

Queue = Queue®

0)

Que‘ue(= push.Qaeué(l) + W.unde}“ﬂow.Ermr | '

Queuet = push.Queue@) + pr.Qu‘eue(O)
Queue? = push.Queue® + f)ﬁﬁtQueqje(l)

Queue™ V) = push.Queue™ + p_ofj.Queue(”‘Z)

Queue™ = push.over flow.Error + 'p‘o—p.Queue("_l)

A ball is pushed-into the componenﬁ Queue by occuirénce of the action p_w_ﬁ of Queue®
process. And a ball in the Queue componen‘t is popped out by occurrence of the action
pop of Queue(x) process. As stated before, this Queue component has a capacity of n box
to accept balls.” When action pop occurred in the situation where Queue process already
is full in its capacity, then it will throw an overflow exception, executing over flow action
(see Queue™ above). In the similar way, when action pop occurred in the situation where
Queue process is enipty in its stock, then it will throwv an underflow exception, executing
under flow action (see Queue® above). These exceptions are ones from process Queue,
but are also considered as exceptions from whole system of Queue-system. o

Next we define the Enque component which pushes balls into the Queue and the Deque
component which pops balls out from Queue. This is described as following:

Enque = push.Enque

54 ‘ : CHAPTER 4. EXAMPLES

Deque = pop.Deque

* Now the whole systein Queue-system, composéd\ of Queue, Enque and Deque, is follow-
ing. : ~ .
- Queue-system = (Queue | Enque | Deque)\{push, pop}
Here as stated in the chapter of preliminary, push and pop action are restricted so that we
can not access this port or action from the outside. On the other hand, the actiOh over flow
and under flbw is not restricted so that we can observe the actions from the outside.
Therefore we can consider the two action over flow and under flow are the exception from
the system Queue- -system ‘

Here is the flowgraph of Queue- system

—— -
- --
-~

-

- Sea

T -— S - - Pd
- -

Figure 4‘.2’: Queue flowgraph

An important arena for the use of CCS process descriptions is modehng protocols. ThlS
example models a snnple protocol for Queue system.

However with untimed CCS, we cannot give a time description directly so that we can-
not capture a long term features of systems. In other words, we cannot know the property
before and after program execution, which is the property of system. Take the Queue sys-
tem for example, we cannot tell that this queue system will eventually overflow or underflow
and the maximum or minimum number of the balls contained in the Queue. The followings

are the formal description'of these properties, where the function $V um(Queue—system),

means the number of contents in Queue-system

?
Queue-system = overflow, non-overflow

4.1. TIMED QUEUE SYSTEM ‘ ' ' 95

? : .
Queue-system = underflownon-underflow
tNum(Queue-system) = 7

4.1.3 Constructing queue systeni. with timed CCS

In this section, we consider to describe the system with time notion. At first, we consider
the process Enguey, which is a timed extension with time. For example, we define Enqueq V
as following: ' : |
Enquey = (3).push.(3).Enqueg

Enquey process is a process which starts with Waiting for passing three units ‘of time,
executes the action push and waits another three units of time, and transits into Enqueg
process again. Also we define the tlmed process Dequeg, which is also a process Enque

extended with time notlon
Dequey = (3).pop.(3).Dequey

Degquey process behaves like Enqguey except. for their functional behaviour. That is, Dequey
process is identical with Enqueq process in its timing of actions, but different in its actions;
Dequey process is a .process which starts with waiting for passing three units of fimé,
.‘executes the action pop and waits another three units of time, and transits into Dequeg
process again. We'subs'titute two process Enque and Deque in Queue-system for two
processes of Enquey and Dequey respectively. And we name the new system acqulred from

- the substltutlon as Queue-systemy. ThlS is formally written as follows;
Qdeue-systemo = (Queue | Enqueqy | Dequeg)\{push, pop},,

Accordingly this new system Queue-syste% is a time extension version of Queue-system.
Constructing the system like this; we can see some of the pfoperty of systems concerned
with time notion, which we cannot tell in untimed system. The followings are the properties
acquired here. ' \ | .

Queue-system, = non-overflow, non-underflow

ENum(Queue-systemy) = n (n is a a constant)’
Namely, we can tell that this timed system Queue-system, will neither overflow nor un-

— 69 —

56 o "~ CHAPTER 4. EXAMPLES

derflow throughout the program run. And we can guarantee;th»e number of balls in the
Queue system is a constant. This is because the timing of the action engque and deque is
completely identical. '

Here we will see some systems, where one of Components of the system is substltuted

" That is to say, we will consider systems whose Engque is substituted for a process related

with each of the relations proposed in the former chapter. And we also see properties of

the systems, which are acquired by substituting Enque process for another process, which,

is in a relation proposed in the former chapter.

Exact-time equivalence

At first we consider to substitute Enque process for the process Emjue process which

© is related with exact-time equi'{/alence Then we name the new queue systefn acquired by
~the substltutmg Enque process for Enque process as Queue — systemy. This is formally

~written as following.

Enque, ~ Enqueo
Queue-system; = (Queue | Enque1 | Dequeg)\{push, pop}

As shown in theorem previously in second chapter, exact-time equivalence is preserved

-
{

between the Systsm Queue — system and the system Queuesystemy.
Q‘uewa—-system1 ~ Queué—systemo
Also we can capture some ?roperty of this system Qseue — system, as followings .
Queue—sg_/stem‘1 ‘& non-overflow, non-underﬂow |

- §Num(Queue-system,) = § Num(Queue-systemy)

The first line of expressions above means that this system Queue — system; will neither
overflow nor underflow in long term systems run. In other words, Queue — system; will
throw neither overflow exception nor underflow exception. This is because between the

processes which is in exact-time equivalence, they are designed to be equivalent in their

total-time for a transition; the time required for every transition is same between two

processes in exact-time equivalence. This is a guarantee of safety property, which states

i

a0 —

4.1. TIMED QUEUE SYSTEM | | 57

" that nothing bad ever happens. A process has a safety property just in case no run from

it contains the bad feature. Here bad feature means throwing the overflow and underflow
' 'vexceptions. The second line of the expressions above denotes that the number of balls
stocked in Queue — system, is equivalent to that of Queue-system,. It is because between
two processes in exact-time equivalence, the timing of actions in every transition is. all
same; the ‘actions of two processes in the relation of exact-time equivalence churs at the
same time. Due to this, we can tell that the number of balls stocked in Queue — systeml

is equivalent to that of Queue—systemo.
Action-occurrence-faster-than relation

' Secondly we consider to substitute Enqdeb process in the system Queue — systemy for
" Enques process which is in action-occurrence-faster-than relation and faster than En'queol
process. We call the new system acquired by the substitution as Queue-systern?. We will
see the formalizetion of these as follows; '

<G-C
Enque; ~ Enquey

Queuve-system, = Queue | Enqueg | Dequeg
As shown in theorem in second chapter, action-occurrence-faster-than relation is preserved
between the system Queue — systems and the system Queue — systemy!
Queue-systems, <r:f Queue-systemy
In this case, we can capture some properties below.

Queuve-systemy = non-overflow, non-underflow

i Num(Queue-systemy) < iNum(Queue-systemy) < N um(Queue-’syétem'o) +1

In this case as a long term feature of systems, Queue-system, will throw neither overflow
" exception nor underflow exception, either. This is because between two processes in action-
occurrence-faster-than relation the time-'required' for every transition is the same, so that
we can tell that the frequency of push action and that of pop action is same. However,
timing of action occurrence is different. That is, the action occurrence of the faster process.

58 | | CHAPTER 4. EXAMPLES

preempt that of slower process. So here because push actions always have a possibility of

' preempting pop actions, although frequency of occurrence of the two actions, the number

of balls in Queue-system, can be larger than that of Queue-system, from time to time.

Total-time equivalence

As a third case, we consider to substitute Enqueg process in the system Queue—systemy
for Enques process which is in total-time equivalent relation. We call the new system

acquired by the substitution of Enqueq for Enques as Queue-systems. These are formally .

written like these;

Enques & Enqueq

Queue-system, = Queue | Enques | Dequeg
Y 3

As shown in theorem in second chapter, total-time equivalence is preserved in between the

system Queue — systems and the system Queue — systemy. This is important.
Queue-systems L Queue-systemy
In this case, we can aéquire properties below as a property of the system.
Queue—system3 = non-underflow, non-overflow

§ Num(Queue-systemg) — 1 < vﬁNum(Queue—‘systemg) < 4Num(Queue-systemy) + 1

In this case as a long term feature of systems, Queue-system, ‘Wm throw neither over-
flow exception nor underflow exception, either. The reason is same as that of exact-time
equivalence, action-occurrence-faster-than relation, which are already shown. However,
total-time equivalence does not provide condition about the timing of action in transi-
tions. of processes so that we cannot tell the property of timing of actions. of processes.
That is, the timing of occurrence of push action and pop action so that sometimes push
action preempts pop action and sometimes vice-versa. When push action preempts pop
act'ion, the number of balls in the Queue-system, might be temporally equal to that of
(Queue-systemg 4+ 1). When pop action preempts push action, the number of balls in the
Queue-system, might be temporally equal to that of (Queue-systemy — 1). '

4.1. TIMED QUEUE SYSTEM | ’ B 59
_After-faster-than relation

Next we consider to substitute Enqueg process in the system Queue-systemy, for Enque,
process which is faster than Enquey with respect to after-faster-than relation. We call the
new system acquired by the substitution of Engue, for Enque4 as Queue- system4 The

formalization are the followmg,

<af
Enquey ~ Enqueg

Queue-system, = Queue | Enque, | Dequey
From theorem in second chapter we can see after-faster-than relation is preserved in
between the system Queue — system, and the system Queue — systemy.
af
Queue-system, ~ Queue-system,
In this case, we can acquire the followings as a property of the system.

Queue-system, [~ non-overflow

Queue-system, = non-underflow
§ Num(Queue-system,) < fNum(Queue-system,) < overflow

“Here we cannot tell this system Queue-system, will not overflow as a long term feature of
~ the system. More directly, this system Queue-system, might throw an overflow exception. v
This is because between two processes in the after~faster—than relation the required timed
~ for a transition are not always equivalent. This relation defines that the time required for
each transition of the faster process is shorter than that of the slower process. This means
‘here that the frequency of push action occurrence of Enques might be higher than that of
Enquey. Accordingly, the freqﬁency of push action occurrence of Enques might be higher

than push action occurrence of Dequey. So Queue-system, might overflow.

Fairly-faster-than relation

Here, we consider to substitute Enquey process in the system Queuve-system,, for Enques

formalization are like these;

60 | CHAPTER 4. EXAMPLES

process. which is faster than Enqueg with respect to falrly—fa,ster—than relation. We call the

‘new system acquired by the substitution of Enqueg for Enque5 as Queue -systems. The

Enques < Enqueo
Queue system5 = Queue | Enque5 \ Dequeo

From theorem in second chapter we can see fairly-faster-than relation is preserved 1n be-

tween the system Qﬁeu¢¥system5 and the system Queue—systemo_.
Quéue-syézﬁe7n5 S Queue;systénzo

In this case, wé can acquire the followings as a property of thé Systeni Que'ue-systemg._
Queue-systemg = non-overflow

Queue-systems = non-underflow
ijum(Queue systemo) < ttNum(Queue system5) < overflow

This system Queue-systems mlght throw an overflow exception. The reason is same as

~ that in after-faster-than relation, which we saw just before. Also there are no situation.

where the number of balls in Queue- system5 is smaller than that of Queue system,. This

is because the fairly-faster-than relation ensures that the faster process is faster in both

timing of.evéry action occurrence and time required for every transition. - So from the
first action the occurrence of enque action might preemfit and at least synchronize with

the occurrence of deque action. Needless to say the maximum number of the balls to be -

stocked in Queue-systems is the maximum balls which Queue-systems can stock.
Total-time-faster-than relation

_Finally, we consider to substitute Enquey process in the system Queue-system, for
Enqﬁeﬁ process which is faster than Enque, with respect to total-time-faster-than re-
lation. We call the new system acquired by the substltutlon of Enqueo for Enques as
Queue systemg. The formahzatlon are like these;

Enqueg < :Enqueo

— 74—

4.1. TIMED QUEUE SYSTEM L 61

-'ueue.-system = Queue | Enqueg | De ueo
6 q q

From theorem in second 'Chapter we can see total—timeffaster—than relation is présérved in

between the system Queue-systemg and the system Queue-systemy.

Queuve-systemyg < Queue-systemy,
In this ‘case, we can acquire the followings as a property of the system Queue-systeh%.
Queue-systemg = ngn—overﬁow

Queue system6 |: non-underflow
i Num(Queue-system,) — 1 < ﬁNum(Queue systemg) < overﬂow

This system Queue-system; might throw an overflow exceptlon The reason is same as
_ that in after-faster-than relation and in fairly- faster-than relation. However, total-time-
faster-than relation does tell nothing about the condition about the timing of action in
transitions of processes, which is similar to total-time equivalence in this respect so that
we cannot tell the property of timing of actions of processes. That is, the timing of
occurrence of pﬁsh action and pop action so that sometimes push action preempts pop
action and sometimes vice-versa. When pop action preempts push action, especially in the
earlier stage, there is a possibility that the number of balls in the Queue 5>’ys>‘tem2 might be
~ temporally equal to that of (Queue-systemy — 1)

4.14 ’-Summary

The properties of the systems are summarized in the following table.

No.- : relations | symbol ||. non-UF non-OF - . fNum

1. exact-time equivalent < v o Vv . n={tNum

2. | action-occurrence-faster-than K ‘ Vv vV | on < fNum <n+1
3. - total-time equivalent < Vv Vv n—1<fNum <n+1
4. after-faster-than . < Vi noverflow

5. fairly-faster-than N V noverflow

6. total-time-faster-than < Vv n — loverflow

.62

CHAPTER 4. EXAMPLES

. : i Num
No. | relations Symbol non-UF non—OF min max
1. | Et equivalent < Vv Vv n n o
2. | Ac-faster than | =~ vV v n n+1
3. | Tt equivalent L Vv vV n—1| n+1
4. | Af-faster than < Vv n | overflow
5. | F-faster than S Vv overflow
6. | Tt-faster than < Vv n—1| overflow

o 76 —

Chapter 5
Conclusions and Future Work

., In this research, we considered some (bi)simulation-based relations between processes
rileCCS[MT91] which is one of timed process algebra(TPA)s, taking a real-time property
into consideration. We attempted to reflect real-time property into the discussion of relat-
ing processes in TeCCS[MT91]

We decided that we atﬁempt to reflect real-time property into the discussion of relating
processes in 7ilLeCCS. Although some calculi of process algebra with time notion proposed,
we noticed that a missing work among them is study on the discussion of relating processes
under the time notion. The relating systems of processes in these works are straightforward;

© . that 1s, time property is ignored in the discussion of relating processes. We claimed that we

need to take time property more into consideration in timed system. We noticed real-time
property playéd an important role in practical timed systerfls from. an. engineering point of
view. Consequently we decided to attempt to reflect real-time property into the discussion
of relating processes in TPA; we relate processés which are identical in functional behaviour
but operate at different speed. That is, we related processes with respect to speéd.

We discussed the issue on the calculus of 7ileCCS, which is one of TPAs. In considering
relation, we construct the relation Within simulation relation which is invented by Milner.
The simulation relation is a fine notion to identify concurrent processes so that we inherit
it and construct the relating systems of processes within the framework of simulation
relation. By manipulating the definition of simulation relation, we have to ijeﬂect'real-time
property into the relating processes. Also we have to examined processes of 7ileCCS and
consider how we can reflect real-time property into the relation of #TeCCS on the processes
of nl'eCCS. Consequently we found two places which can express the spééd in processes

s

64 CHAPTER 5. ‘CONCLUSIONS AND FUTURE WORK

of ITeCCS; One kind of speeds is one based on the timiug of ’ghe occurrence of action.
~execution, and the other is one based on the time required for whole action execution.

Also we strictly distinguish the notion of the “faster” transition expressed by required

time is shorter, and the “synchronous” transition expressed by required time is equal. As"

a result with a combination of two placesvarid two kinds of speeds, we propose six kinds

of speed, hence six relations of processes that reflect real-time property in TPA. These six
relations to'be proposed here all express the different aspecps of real-time property. And.

We explain relation of these relations by descriptive capability in order. We show that
bisimulation relation and the Moller’s faster-than relation, that are proposed in preceding
researches, are respectively included by one of relations of these.

We conduct formalization of each relation proposed in the former section. We also
show Properties of each relation, including congruence, are also given with the proofs.
Concerning the congruence property, we show that. these relations are not congruent for

ITeCCS in the presence of parallel operator “|” So we proposed a new timed .calculus k

‘TeCCS whose semantics is slightly diverse from that of lTeCCS and show that theses

relation are congruent for all the operators of it.

In the fourth chapter, we showed a timed queue system as an example of the six

relations. Through this example, we saw the difference of the six relations in the concrete. -

Itis a substantial result to consider to reflect real-time property, which is one of main
roles in timed systems, into the discussion of relating processes in TPA. We examined

and captured real-time property, and reflected it within the framework of TPA; labelled

transition systems of [TeCCS and the simulation relations of process algebra. ‘Ac a result
we found and propose six speeds in the framework, therefore six relation ,..which reflect
real-time property.” Each of six relations shows different espect of real-time property within
ITeCCS. By the classification of speed, we can arrange the processes which is in the relation

of speed. Also to show the congruence property, we guaranteed substituibity between pro- -

“cess in systems. And this enable us to modular-analysis of complex systems in foundation

level. The theory for the modular analysis‘ will offer a foundation for the technology of

- component oriented software development. Furthermore, we brought rich theory to timed

process algebras in general; this theory will apply for another timed calculus. The theory
in this research is effective to the specification with process-algebra-like LTS as well as TPA
itself. Also we can directly use. this theory to programmmg languages based on process

“algebra such as Pict.

As future Work we would hke to consider a congruence property of calculus. In this

65

work we showed that a congruence property is not guaranteed by the parallel composition

Ml”

'op’erator of [TeCCS. Thereupon we manipulate the semantics the parallel composition

“|’7

operator “|”of I'TeCCS and proposed £TeCCS. We show that we can acquire the congruence
property in the calculus of kTeCCS. However the calculus of kTeCCS does not purely realize
- the concurrency, meaning this is more or less artificial. As a future work, we want to solve
~ this problem; we want to built a pure theory for TPAs. Secondly, we intend to extend our
" theory to weak relation of processes. Also, we want to enrich the theory of these relations
with algebraic theory. Thirdly, we want to attempt to apply this theory to a network
theory. The-treat-nden_t of time notion in {TeCCS is similar to that of transmission delay
in the network. We view we can develop verification system for a problem of which is the
faster between RPC(Remote Procedure Call)s and agent migrations. Furthermore we will

develop verification and implementation tool for this theory.

References

[AP94] R.Amadio and S. Prasa,d LOC&lltleb and Fallures In Proc.of FST & TCS,volume
830 of LNCS,p.205-216,1994. :

[BK85] J.A. Bergstra J.W. Klop, Algebra of Corﬁmunicating Processes with Abstraction”,
Theoretical Computer Science 37(1):77-121 1985 '

[Ber86] J.A Bergstra,J.W. Klop. Algebra of communicating processes. Proceedmgs of EWI -
Symposium on Mathematics and CS, pp.89:138, Oct.6-7 1986.

[CG98} L. Cardelli and A.D.Gordon. Mobile amblentq In Proc. of FoSSaCS, volume 1378
of LNCS,p 140-155,1998. ‘

[CG()O] L.Cardelli and A.D. Gordon Anytlme anywhere Modal logics for mobile ambients.
In Proc. of POPL,2000. '

[Fou98] C.Fournet. Le join-calcul:un calcul pour la programmation‘repartie et mobile.PhD
thesis,Ecole Polytechnique,1998(in english). ‘

[HT91] Kohei Honda and Mario Tokoro.An Object Calculus for Asynchronous Com-
munication. Proc. ECOOP’91,LNCS 512,pp.133-147,Springer-Verlag,1991. Available at
ftp://ftp.des.ed.ac.uk/export /kohei/objcal ps.gz. '

[Hon] K.Honda.Selected bibliography - on - mobile processes.-
http:/ /Www cs.auc. dk/ moblhty / b1b/ honda html.

[HR95] M. Hennessy and T.Regan. A process algebra for timed systems Informatlon and
Computation 117. 1995

[Hoa78] C.A.R.Hoare. Communicating Sequential Processes. Communications of the
ACM, Vol.21, No.8, pp.666-667, August 1978.

— 80 ~

References ‘ ' ‘ 67

[Hoa85] C.A.R.Hoare. Communicating Sequential Processes. Prentice-Hall International
series in computing science,1985.

[HR98] M.Hennessy and J.Riely. Resource access control in systems of mobile agents. In
Proc. of HLCL,volume 16.3 of Electronic Notes in Theoretical Computer Science,1998

'[JD93] Milner,R..,Parrow,J.,and Walker,D.Modal Logics for Mobile Processes. Theoretical
Computer Science,Vol.114,pp.149-171,1993. :

[LVO1] G.Luttgen and W.Vogller.“A faster-than relation for asynchronous processes. In
CONCUR ’01, LNCS 2154, Springer-Verlag. 2001.

[MT90] F.Moller and C.Tofts. A temporal calculﬁs of cbmmunicating systems. In CON-
CUR ’90, LNCS 458, pp401-415. Springer-Verlag. 1990. §

[MT91] F.Moller and C.Tofts. Relating processes with respéct to speed. In CONCUR 91,
 LNCS 527, pp424-438. Springer-Verlag. 1991.

[Mil89] R. MiIner Communication and Concurrency. Prentice Hall. 1989. .

[Mil99) R Milner. Commumcatmg and Mobile Systems: the - calculus Cambrldge Uni-
Ver81ty Press. 1999.

[Mil83] R.Milner. Calculi for synchrony and asynchroﬁy. Theoretical Com"puterchiénce.
25 1983. ' ‘

' [Mi193] Robin Milner,Elefnénts of Interaction. .Communic"ation of ACM January 1993.

[MPD89] R.Milner, J.Parrow, D.Walker. A-Calculus of Mobile Process Part 1/ 2 Avail-
- able from http:/ /lampwww epfl. Ch/ mobility/ 1989.

' [MS92] Robin Milner and Davide Sangiorgi. Barbed Biéimulatibn.-Proc.of 19th” inter-
national Colloquium on Automata;languages and Programming '(IC_ALP’QZ)I,Lecture
Notes in Comﬂpuvter Scierice,Vol.623,pp.685-695,Springer-Verlag,1992. Available at
http://www.inria.fr/meije/personnel /Davide.Sangiorgi/mypapers.html].

[Mil93] R.Milner.Elements of interaction.Communications of the ACM,36(1):78-89,1993.

[Mil] Mﬂner,Communication and Concurrency,Prentice-Hall.

68

[NV98] U. Nestmann and B Victor. Calcuh for moblle processes: Bxbhography and web
pages. Bulletin of the EATCS ,64: 139- 144,1998.

[N'S90] X. Nicolin and J. Sifakis. The algebra for timed processes ATP: theory and appli- ,

cation. In proceedings of REX Workshop “Real—Time: Theory in Practice”. 1990.

[NSQl] X. Nicollin and J. Sifakis. An overview and synthesis on tlmed process algebras '

" LNCS 575, Sprlnger Verlag. 1991

[PS93] Benjamin Pierce and Davide Sangiorgi,Typing ~ and .= Sub-
typing for Mobile - Processes.LICS’93,July 1993. Available at
http://www.cs.indiana.edu/hyplan/pierce/pierce/ftp/index.htmi.

[PT97] Benjafnin C.Pierce and David N.Turner.Pict:A Programming Lan-
guage Based on the Pi—Calculus.1997,Computer Science. Department,Indiana
University,To appear in Milner - Festschrift, MIT Press,1997. Available at
http://www.cs.indiana.edu/hyplan/pierce/pierce/ftp/index.html.

[Pie] Benjafnin C.Pierce.Programmiﬁg in Pi-Calculus:A Tutorial _ Introduction
to = Pice. Available at http:/ /WWW.cs.indiana.edu/hyplan/pierCe/ft\p/pict/pict—
4.0/Doc/tutorial.ps.gz. ' " : ’

PS96] B.C.Pierce and D.Sangiorgi. Typing and subtyping for mobile pro-

- cesses.Mathematical Structures in Computer Science,6(5):409-453,1996

[Pie96] B.C.Pierce. Foundational calculi for . programming languages" In

A .B.Tucker,editor,Handbook of Computer Science and Engmeermg,chapter 139.CRC

Press,1996.
[Par] Joachim Parrow. An Introduction to the II-Calculus.

[PW93] R.Milner, J Parrow,and D. Walker. Modal loglcs for moblle processes. Theore‘mcal
Computer Science 114() 149- 171,1993.

[Sch91] S. Schnelder An operatlonal semantics - for tlmed CSP Programming research,_

group, Oxford Umversfcy, UK, 1991 . o

[Stig6] C.Stirling. Modal and Temporal Logics for Processes, 1996

References

69

[Wan90] Wang Yi. Real-time behaviour of asynchronous agents. In CONCUR ’90 LNCS
458 , pp502-520, Springer-Verlag. 1990.

